膠州灣三維水動(dòng)力數(shù)值模擬研究
[Abstract]:In this paper, a three-dimensional finite volume ocean model FVCOM with unstructured grid is used to establish a three-dimensional positive pressure high resolution numerical model for Jiaozhou Bay. Through the comparison of the observed and simulated data, the rationality of the model is verified. Based on the established model, the tidal currents in the Jiaozhou Bay are numerically simulated and the tracer test is carried out. The factors and characteristics of the water exchange in Jiaozhou Bay are examined. Based on the actual bridge length, the number of piers and the spatial distribution of the bridge pier and the diameter parameters of the pier in Jiaozhou Bay Bridge, the high resolution grid containing the bridge is generated, and the hydrodynamic characteristics of the bridge before and after the construction of the Jiaozhou Bay Bridge are compared. The main conclusions are as follows: (1) The tide, tidal current and residual current characteristics of Jiaozhou Bay are studied. The simulation results show that the tidal current is characterized by reciprocating flow. The residual current is subjected to complex topography, forming a multi vortex structure near the mouth of the bay. The value of Stokes drift is two orders of magnitude smaller than Euler's residual current, and Lagrange's residual current is basically the same as Eulerian residual current. (2) the flow product of the cross section is used. The results show that the maximum influence of the sea surface fluctuation on the tidal volume can be greater than 1%, which can not be ignored: the tidal volume of the tide period is 2-3 times that of the small tide period, the tidal volume is the lowest in spring, the second in winter and the higher in summer and autumn. The results are generally large, but the two methods of seasonal variation are basically the same. (3) the water exchange capacity and stability time of different subregions in Jiaozhou Bay are different, the water exchange ability of the west side of the bay is stronger, but the stability is relatively slow: the water exchange of the Bay mouth is stable and fast, but the quality point is easily captured by the vortex in northern Huangdao (Yu Liuwo) and water exchange. The capacity is low; the water exchange capacity of the northeast part of the bay is weak, and the water exchange is mainly through the coastal area of the east of the Bay and outside the bay. The stable time of the tracer particles is relatively short during the flood tide, and the stable time of the tracer particles is placed for a long time during the ebb tide. (4) after the establishment of the bridge, the bridge's barrier effect makes the tidal current very little near the bridge pier in the whole bay. The maximum increase of water level is 1.5cm, and the increase of the north side of the bridge is greater than that of the south side of the bridge. The north side of the bridge has the largest increase in the north-west and northeastern part. Similarly, the damping effect of the bridge reduces the water level in the bay. This change is mainly concentrated on the north side of the bridge (especially in the northwest and northeast). The bridge is built to make the bridge. The residual current in the vicinity of the bridge has no obvious influence on the size and structure of the four strong vortices in the bay mouth. In the west section of the bridge, the strength of the residual current in the north and south sides of the bridge has been strengthened; the residual current intensity of the middle section of the bridge is basically unchanged and the north side obviously decreases; the residual current intensity in the east section of the bridge is obviously enhanced and the north side decreases in Jiaozhou. The establishment of the bay bridge makes the tidal volume of the Jiaozhou Bay decrease in both the size and the average. (5) the influence of the cross sea bridge on the tidal current is mainly concentrated in the vicinity of the bridge pier. For the sea area near the Dagu river channel bridge, the flow field is basically unchanged after the bridge is passed through the bridge. After the bridge, the flow after the bridge is passed. The impact of the piers on the tide is obviously smaller than that of the bridge pier, that is, the influence of the pier on the tide is directly related to the size of the pier and the distance between the piers. The influence of the pier is a rectangular and asymmetrical circle. The influence of the bridge to the tide is directly related to the angle of the pier when the tide passes through the pier, and the tide must pass through a number of piers continuously, so the effect of the bridge on the tide is the result of the joint action of many piers. When the flow velocity is obviously increased and the velocity of the pier decreases after the bridge pier, the flow velocity decreases as a whole, so the velocity of the pier decreases again when the pier passes through the pier again. The flow velocity between the piers increases before the bridge, but decreases slightly than that before the bridge. The water exchange capacity of the bridge in the different regions of the bay is different, and the water exchange in the northwest of the bridge is different. The ability of water exchange in the sea area of the northeast of the bridge was strengthened, and the water exchange ability of the Bay Center and the bay mouth changed little. (6) the water temperature in the Jiaozhou Bay area has obvious seasonal difference, and basically changes with the solar radiation. The isotherm in the waters outside the bay of Jiaozhou Bay shows the north-east north-west direction and the sea temperature as a whole. The interannual variability is relatively small, and the isotherms in the Bay are mostly parallel to the isthmus, smaller in the middle of the Bay and the Bay, and larger in the coastal waters.
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P731.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張哲;王江濤;;膠州灣營養(yǎng)鹽研究概述[J];海洋科學(xué);2009年11期
2 楊瑾;;淺議膠州灣的污染現(xiàn)狀與環(huán)灣保護(hù)[J];海洋開發(fā)與管理;2010年09期
3 沈啟東;;介紹膠州灣幾種海產(chǎn)動(dòng)物標(biāo)本的采集與固定方法[J];生物學(xué)通報(bào);1954年06期
4 董金海,王廣潔,丁正凰,宋光澤;在我國膠州灣內(nèi) 首獲成體抹香鯨[J];海洋科學(xué);1977年01期
5 鄭全安,孫元福,吳永森,于衍桂;膠州灣污染狀況的航空遙感監(jiān)測(cè)結(jié)果分析[J];海洋湖沼通報(bào);1980年04期
6 張洪芹;;膠州灣砷的存在及分布[J];海洋湖沼通報(bào);1982年03期
7 水化學(xué)研究組;;膠州灣海水中氮的地球化學(xué)(續(xù))[J];海洋湖沼通報(bào);1982年04期
8 王文海;王潤玉;張書欣;;膠州灣的泥沙來源及其自然沉積速率[J];海岸工程;1982年01期
9 李善為;王永吉;張耆年;徐孝詩;;膠州灣的地貌發(fā)育[J];海洋通報(bào);1986年01期
10 王文海;;膠州灣自然環(huán)境概述[J];海岸工程;1986年03期
相關(guān)會(huì)議論文 前10條
1 楊東方;高振會(huì);孫培艷;秦潔;郭軍輝;;膠州灣西南水域重金屬砷的分布[A];中國環(huán)境科學(xué)學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷)[C];2009年
2 馬彩華;游奎;彭斌;許志華;李康;趙煥利;袁偉;;膠州灣產(chǎn)業(yè)格局變動(dòng)對(duì)環(huán)境的影響分析[A];2011中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第一卷)[C];2011年
3 楊東方;石強(qiáng);張愛君;白紅妍;陳晨;;膠州灣水域的石油分布[A];2012中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第二卷)[C];2012年
4 林曉紅;王偉;林森;;水環(huán)境容量分析及保護(hù)對(duì)策研究——以膠州灣為例[A];多元與包容——2012中國城市規(guī)劃年會(huì)論文集(09.城市生態(tài)規(guī)劃)[C];2012年
5 沈志良;;膠州灣營養(yǎng)鹽結(jié)構(gòu)的長(zhǎng)期變化及其對(duì)浮游植物組成的影響[A];中國海洋與湖沼學(xué)會(huì)甲殼動(dòng)物學(xué)分會(huì)、中國動(dòng)物學(xué)會(huì)、中國海洋與湖沼學(xué)會(huì)生態(tài)學(xué)分會(huì)2000年學(xué)術(shù)研討會(huì)論文摘要集[C];2000年
6 周玉娟;楊桂朋;丁海兵;劉春穎;;低分子量有機(jī)酸對(duì)膠州灣海水酸化的影響[A];中國海洋湖沼學(xué)會(huì)第十次全國會(huì)員代表大會(huì)暨學(xué)術(shù)研討會(huì)論文集[C];2012年
7 楊東方;朱四喜;王鳳友;楊秀琴;吳云杰;;汞對(duì)膠州灣水域的影響——水域遷移過程[A];2014中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五章)[C];2014年
8 陳聚法;陳碧鵑;李秋芬;過鋒;崔毅;馬紹賽;;膠州灣北部海域水環(huán)境質(zhì)量現(xiàn)狀及其動(dòng)態(tài)變化[A];中國海洋湖沼學(xué)會(huì)水文氣象分會(huì)、中國海洋湖沼學(xué)會(huì)潮汐及海平面專業(yè)委員會(huì)、中國海洋湖沼學(xué)會(huì)計(jì)算海洋物理專業(yè)委員會(huì)、山東(暨青島市)海洋湖沼學(xué)會(huì)2005年學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
9 王廣俊;;保護(hù)膠州灣生態(tài)環(huán)境[A];山東省海洋經(jīng)濟(jì)技術(shù)研究會(huì)2005年度學(xué)術(shù)研討會(huì)論文集[C];2005年
10 顏天;譚志軍;李鈞;張永山;于仁誠;王云峰;周名江;;赤潮的生物毒性評(píng)價(jià)的初步研究——生物毒性測(cè)試方法在一次膠州灣赤潮中的應(yīng)用[A];第七屆全國海洋湖沼青年學(xué)者學(xué)術(shù)研討會(huì)論文摘要集[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 劉洪濱 山東省海洋經(jīng)濟(jì)研究所所長(zhǎng)、研究員;膠州灣發(fā)展需要新思維[N];中國水利報(bào);2007年
2 梁學(xué)勇 周兆順;膠州灣工業(yè)聚集區(qū) 滿目新景入畫來[N];青島日?qǐng)?bào);2006年
3 沈俊霖;膠州灣隧道建設(shè)駛?cè)肟燔嚨繹N];青島日?qǐng)?bào);2007年
4 李攻;青島要把膠州灣變城區(qū)“內(nèi)湖”[N];第一財(cái)經(jīng)日?qǐng)?bào);2008年
5 本報(bào)記者 霍峰;環(huán)膠州灣高速公路(市區(qū)段)拓寬改造[N];青島日?qǐng)?bào);2008年
6 記者 代桂云;讓膠州灣承擔(dān)起百年發(fā)展重任[N];人民政協(xié)報(bào);2009年
7 崔峰 商晨 王曉昆 孫倩;蛟龍躍上膠州灣[N];人民日?qǐng)?bào);2011年
8 記者 馬之恒;膠州灣跨海大橋如何建成的[N];北京科技報(bào);2011年
9 駐魯記者 柏彥雯 通訊員 賈國富;世界最長(zhǎng)跨海大橋膠州灣大橋通過驗(yàn)收[N];中國水運(yùn)報(bào);2011年
10 本報(bào)記者 周建亮;膠州灣大橋免費(fèi)通行[N];青島日?qǐng)?bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 史經(jīng)昊;膠州灣演變對(duì)人類活動(dòng)的響應(yīng)[D];中國海洋大學(xué);2010年
2 劉哲;膠州灣水體交換與營養(yǎng)鹽收支過程數(shù)值模型研究[D];中國海洋大學(xué);2004年
3 趙淑江;膠州灣生態(tài)系統(tǒng)主要生態(tài)因子的長(zhǎng)期變化[D];中國科學(xué)院研究生院(海洋研究所);2002年
4 鄒濤;夏季膠州灣入海污染物總量控制研究[D];中國海洋大學(xué);2012年
5 李穎虹;膠州灣生態(tài)系統(tǒng)動(dòng)態(tài)變化研究[D];中國科學(xué)院研究生院(海洋研究所);2012年
6 張學(xué)慶;近岸海域環(huán)境數(shù)學(xué)模型研究及其在膠州灣的應(yīng)用[D];中國海洋大學(xué);2006年
7 孫磊;膠州灣海岸帶生態(tài)系統(tǒng)健康評(píng)價(jià)與預(yù)測(cè)研究[D];中國海洋大學(xué);2008年
8 余云軍;膠州灣流域與海岸帶綜合管理研究[D];中國海洋大學(xué);2010年
9 張燕;海灣入海污染物總量控制方法與應(yīng)用研究[D];中國海洋大學(xué);2007年
10 閆菊;膠州灣海域海岸帶綜合管理研究[D];中國海洋大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 趙燕燕;新型溴代阻燃劑在膠州灣濕地污染狀況及遷移轉(zhuǎn)化的研究[D];青島大學(xué);2015年
2 董成仁;膠州灣濱海濕地CO_2通量及源/匯功能研究[D];青島大學(xué);2015年
3 趙慧敏;春季膠州灣海水甲烷氧化速率時(shí)空變化初步研究[D];中國海洋大學(xué);2015年
4 董文華;鐳同位素對(duì)膠州灣水體混合及海底地下水排放的示蹤研究[D];中國海洋大學(xué);2015年
5 王雪;膠州灣三維水動(dòng)力數(shù)值模擬研究[D];中國海洋大學(xué);2014年
6 趙瑾;環(huán)膠州灣河流對(duì)膠州灣水沙輸送的數(shù)值模擬[D];中國海洋大學(xué);2007年
7 徐曉達(dá);膠州灣東部和青島前海地質(zhì)環(huán)境及污染狀況的初步研究[D];中國海洋大學(xué);2005年
8 白偉明;膠州灣工程地質(zhì)環(huán)境特征研究[D];中國海洋大學(xué);2005年
9 牟森;膠州灣岸線變化對(duì)動(dòng)力環(huán)境的影響[D];中國海洋大學(xué);2009年
10 紀(jì)朝彬;膠州灣生態(tài)環(huán)境現(xiàn)狀分析及治理對(duì)策研究[D];中國海洋大學(xué);2010年
,本文編號(hào):2161870
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2161870.html