膠州灣沉積物—海水界面營養(yǎng)鹽的遷移特征及其影響因素解析
[Abstract]:In July 2015 and January 2016, the undisturbed sediment column and the bottom water in the same station were collected in the Jiaozhou Bay by "innovation number". The laboratory culture method was used to determine the nitrate (NO_3-N), NO_2-N, NH_4-N, PO_4-P and phosphate (PO_4-P) in the sediment sea interface under the temperature and dissolved oxygen condition in situ. The exchange rate of silicate (SiO_3-Si). On this basis, the exchange fluxes of dissolved inorganic nutrients in the Jiaozhou Bay sediment sea interface and their contribution to primary productivity in the summer and winter two quarter were further estimated. The effects of related environmental factors on the exchange of nutrients in the interface were also discussed. The main results are as follows: 1, sediment sea in the Jiaozhou Bay. The water interface SiO_3-Si shows the migration from the sediments to the water body, while the migration direction of DIN and PO_4-P is not consistent in different seasons. The Jiaozhou Bay Sediments in the summer are mainly the source of the water body DIN, and in winter the overall performance is the sink of DIN and PO_4-P. Based on the estimated exchange fluxes of the nutrients in the sediment sea interface of the Jiaozhou Bay, Xia Jichen The product release of N, P can provide N for maintenance of primary productivity, 39.3% and 14.1% of P, summer, and winter Jiaozhou Bay sediment release Si, respectively, to provide 15.6% of Si for maintaining primary productivity and 25.8%. in most of the sediment in the Gulf of Jiaozhou Bay - inorganic nitrogen in the sea interface, mainly in the form of NO_3-N and NH_4-N. In summer, most of the Jiaozhou Bay The platform sediments are the source of water body NO_3-N, and the exchange rate is -714~1 560 mu mol/ (m2. D).NO_2-N in the sediment sea interface of Jiaozhou Bay, which is generally low in the winter. In summer, the sediment is mostly the source of water body NO_2-N, and the exchange rate is -117~941 micron mol/ (M2 d) in winter. The sediment of the state Bay is the source of NH_4-N, while most of the sediments in winter show a sink of NH_4-N in the water body. The exchange rate is within the range of -1 334~26064 mol/ (m2. D). In summer, the migration direction of the sediment sea interface PO_4-P is not consistent, while the sediment in winter is the sink of the water PO_4-P, and the exchange rate of the interface PO_4-P is -128~861. Mol/ (m2. D). In summer and winter, the sediments of the Jiaozhou Bay are all the source of SiO_3-Si in the water body, the exchange rate is 43~4 889 mol/ (m2. D). The exchange flux between the sediment and the seawater interface of the Jiaozhou Bay in summer is 2.35 * 108,6.35 * 109 The amount of 3.69 * 107 mmol. D-1 provides a 14.1%. for P for the maintenance of primary productivity, while the sediment in winter is shown as the sink of NO_3-n, NO_2-n, NH_4n and PO_4-p in water body, and the exchange flux is -6.39 * 107, -1.49 * 107, -1.33 * 108, and -2.20 *. The exchange flux of the Jiaozhou Bay in winter is 6.50 * 108 and 1.32 * respectively. D-1, 15.6% and 25.8%.2 for the maintenance of primary productivity, respectively, the mineralization of organic matter in the sediments of the Jiaozhou Bay in summer is intense, and it has a significant effect on the exchange of various nutrients in the sediments. At the same time, the exchange of NH_4n in summer is also regulated by the assimilation and desorption of benthic algae and the exchange of SiO_3-si. The mineralization of organic matter in the sediments is weak in winter. The assimilation and diffusion process of benthic algae have significant influence on the exchange of NO_3-n, PO_4-p and SiO_3-si in the sediment sea interface. In addition, the exchange of PO_4-p is also regulated by the adsorption desorption of organic matter, and the exchange of SiO_3-si is also affected by clay. The dissolution process of silicon in the mineral is similar to that in summer. Mineralization and desorption are still the main process to regulate the exchange of NH_4n in the sediment sea interface of Jiaozhou Bay in winter. The exchange rate of NO_3-n in the sediment sea interface in the summer of Jiaozhou Bay is only with the water content of the surface sediments, the underlying NO_3-n concentration and the NO_3-n concentration in the interstitial water. The exchange rate of NO_2-n and NH_4-n has no significant correlation with the substrate parameters, the concentration of the corresponding nutrients in the bottom water and the interstitial water. By the principal component regression analysis, the main environmental factors affecting the exchange of NO_3-n, NO_2-n and NH_4n in summer are the Chla of the surface sediments, TOC, TN, water content and the bottom inorganic nitrogen concentration. The relationship between factors and the exchange rate of nutrients can be deduced that the mineralization and diffusion of organic matter in the sediment may be the main process to regulate NO_3-n exchange. The mineralization of organic matter, the assimilation of benthic algae, adsorption desorption and diffusion of sediment may be the main control of the exchange of NH_4n in the sediment sea interface of Jiaozhou Bay in summer. The response of process.NO_2-n exchange and interface NH_4n exchange to the change of environmental factors is more consistent. Therefore, the exchange of NO_2-n may be mainly regulated by nitrification and the exchange rate of.PO_4-p is related only to the TOC and c/n of the surface sediments. The main environmental factors affecting the exchange are Chla, TOC and TP, and the mineralization of organic matter in the surface sediments. It may be the main process that affects the PO_4-p exchange in the sediment sea interface of the Jiaozhou Bay in summer. The exchange rate of the sediment sea interface SiO_3-si in the Summer Bay and the concentration of SiO_3-si in the interstitial water, the low SiO_3-si concentration at the bottom, the TOC, Chla, BSI and the water content of the surface sediments, the Chla of the surface sediments, TOC, BSI, water content and S in the interstitial water The concentration of iO_3-si is the main influencing factor, and the process of dissolution and diffusion may be the main process to regulate the exchange of SiO_3-si in summer, and the mineralization of organic matter can promote the exchange of SiO_3-Si at the bottom of the summer by changing the properties of the sediments. The exchange of NO_3-N in the sediment sea interface and the number of sediment, the concentration of NO_3-N in the bottom water and the interstitial water in winter There is no significant correlation. The main factors are the content of Chl a in the surface sediments and the concentration of DIN in the interstitial water. The exchange of NO_3-N in the sediment sea interface is controlled by the assimilation and diffusion of the benthic algae. The exchange rate of.NO_2-N and NH_4-N is only positively correlated with the Chl a in the surface sediments, and the Chl A and clay content in the surface sediments. And D50 is the main environmental factor affecting the NH_4-N exchange. The exchange of the underlying NH_4-N may be mainly controlled by the degradation and desorption of the endogenous marine endogenous organic matter and adsorption desorption process. As in the summer, the response of the Jiaozhou Bay sediment sea interface NO_2-N exchange and the interface NH_4-N exchange to the environmental factor changes in winter is more consistent, so NO_2-N The exchange rate of the exchange may be regulated by nitrification. The exchange rate of.PO_4-P is only related to the surface TOC. The main factors are Chl a, TOC, water content, PO_4-P concentration at the bottom and PO_4-P concentration in the interstitial water, the adsorption and desorption of organic matter to PO_4-P, and the assimilation and diffusion of benthic organisms may be the regulation of the low level PO_4-P intersection in winter. The exchange of.SiO_3-Si is related to the concentration of SiO_3-Si in the interstitial water and the BSi content in the surface sediments. The main factors are the Chl a content in the surface sediments and the SiO_3-Si concentration in the interstitial water, which are mainly controlled by the assimilation of the benthic algae and the process of dissolution and diffusion.
【學位授予單位】:中國科學院研究生院(海洋研究所)
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:P734;P736.4
【相似文獻】
相關(guān)期刊論文 前10條
1 張哲;王江濤;;膠州灣營養(yǎng)鹽研究概述[J];海洋科學;2009年11期
2 楊瑾;;淺議膠州灣的污染現(xiàn)狀與環(huán)灣保護[J];海洋開發(fā)與管理;2010年09期
3 沈啟東;;介紹膠州灣幾種海產(chǎn)動物標本的采集與固定方法[J];生物學通報;1954年06期
4 董金海,王廣潔,丁正凰,宋光澤;在我國膠州灣內(nèi) 首獲成體抹香鯨[J];海洋科學;1977年01期
5 鄭全安,孫元福,吳永森,于衍桂;膠州灣污染狀況的航空遙感監(jiān)測結(jié)果分析[J];海洋湖沼通報;1980年04期
6 張洪芹;;膠州灣砷的存在及分布[J];海洋湖沼通報;1982年03期
7 水化學研究組;;膠州灣海水中氮的地球化學(續(xù))[J];海洋湖沼通報;1982年04期
8 王文海;王潤玉;張書欣;;膠州灣的泥沙來源及其自然沉積速率[J];海岸工程;1982年01期
9 李善為;王永吉;張耆年;徐孝詩;;膠州灣的地貌發(fā)育[J];海洋通報;1986年01期
10 王文海;;膠州灣自然環(huán)境概述[J];海岸工程;1986年03期
相關(guān)會議論文 前10條
1 楊東方;高振會;孫培艷;秦潔;郭軍輝;;膠州灣西南水域重金屬砷的分布[A];中國環(huán)境科學學會2009年學術(shù)年會論文集(第一卷)[C];2009年
2 馬彩華;游奎;彭斌;許志華;李康;趙煥利;袁偉;;膠州灣產(chǎn)業(yè)格局變動對環(huán)境的影響分析[A];2011中國環(huán)境科學學會學術(shù)年會論文集(第一卷)[C];2011年
3 楊東方;石強;張愛君;白紅妍;陳晨;;膠州灣水域的石油分布[A];2012中國環(huán)境科學學會學術(shù)年會論文集(第二卷)[C];2012年
4 林曉紅;王偉;林森;;水環(huán)境容量分析及保護對策研究——以膠州灣為例[A];多元與包容——2012中國城市規(guī)劃年會論文集(09.城市生態(tài)規(guī)劃)[C];2012年
5 沈志良;;膠州灣營養(yǎng)鹽結(jié)構(gòu)的長期變化及其對浮游植物組成的影響[A];中國海洋與湖沼學會甲殼動物學分會、中國動物學會、中國海洋與湖沼學會生態(tài)學分會2000年學術(shù)研討會論文摘要集[C];2000年
6 周玉娟;楊桂朋;丁海兵;劉春穎;;低分子量有機酸對膠州灣海水酸化的影響[A];中國海洋湖沼學會第十次全國會員代表大會暨學術(shù)研討會論文集[C];2012年
7 楊東方;朱四喜;王鳳友;楊秀琴;吳云杰;;汞對膠州灣水域的影響——水域遷移過程[A];2014中國環(huán)境科學學會學術(shù)年會論文集(第五章)[C];2014年
8 陳聚法;陳碧鵑;李秋芬;過鋒;崔毅;馬紹賽;;膠州灣北部海域水環(huán)境質(zhì)量現(xiàn)狀及其動態(tài)變化[A];中國海洋湖沼學會水文氣象分會、中國海洋湖沼學會潮汐及海平面專業(yè)委員會、中國海洋湖沼學會計算海洋物理專業(yè)委員會、山東(暨青島市)海洋湖沼學會2005年學術(shù)研討會論文摘要集[C];2005年
9 王廣俊;;保護膠州灣生態(tài)環(huán)境[A];山東省海洋經(jīng)濟技術(shù)研究會2005年度學術(shù)研討會論文集[C];2005年
10 顏天;譚志軍;李鈞;張永山;于仁誠;王云峰;周名江;;赤潮的生物毒性評價的初步研究——生物毒性測試方法在一次膠州灣赤潮中的應用[A];第七屆全國海洋湖沼青年學者學術(shù)研討會論文摘要集[C];2000年
相關(guān)重要報紙文章 前10條
1 劉洪濱 山東省海洋經(jīng)濟研究所所長、研究員;膠州灣發(fā)展需要新思維[N];中國水利報;2007年
2 梁學勇 周兆順;膠州灣工業(yè)聚集區(qū) 滿目新景入畫來[N];青島日報;2006年
3 沈俊霖;膠州灣隧道建設(shè)駛?cè)肟燔嚨繹N];青島日報;2007年
4 李攻;青島要把膠州灣變城區(qū)“內(nèi)湖”[N];第一財經(jīng)日報;2008年
5 本報記者 霍峰;環(huán)膠州灣高速公路(市區(qū)段)拓寬改造[N];青島日報;2008年
6 記者 代桂云;讓膠州灣承擔起百年發(fā)展重任[N];人民政協(xié)報;2009年
7 崔峰 商晨 王曉昆 孫倩;蛟龍躍上膠州灣[N];人民日報;2011年
8 記者 馬之恒;膠州灣跨海大橋如何建成的[N];北京科技報;2011年
9 駐魯記者 柏彥雯 通訊員 賈國富;世界最長跨海大橋膠州灣大橋通過驗收[N];中國水運報;2011年
10 本報記者 周建亮;膠州灣大橋免費通行[N];青島日報;2012年
相關(guān)博士學位論文 前10條
1 史經(jīng)昊;膠州灣演變對人類活動的響應[D];中國海洋大學;2010年
2 劉哲;膠州灣水體交換與營養(yǎng)鹽收支過程數(shù)值模型研究[D];中國海洋大學;2004年
3 趙淑江;膠州灣生態(tài)系統(tǒng)主要生態(tài)因子的長期變化[D];中國科學院研究生院(海洋研究所);2002年
4 鄒濤;夏季膠州灣入海污染物總量控制研究[D];中國海洋大學;2012年
5 李穎虹;膠州灣生態(tài)系統(tǒng)動態(tài)變化研究[D];中國科學院研究生院(海洋研究所);2012年
6 張學慶;近岸海域環(huán)境數(shù)學模型研究及其在膠州灣的應用[D];中國海洋大學;2006年
7 孫磊;膠州灣海岸帶生態(tài)系統(tǒng)健康評價與預測研究[D];中國海洋大學;2008年
8 余云軍;膠州灣流域與海岸帶綜合管理研究[D];中國海洋大學;2010年
9 張燕;海灣入海污染物總量控制方法與應用研究[D];中國海洋大學;2007年
10 閆菊;膠州灣海域海岸帶綜合管理研究[D];中國海洋大學;2003年
相關(guān)碩士學位論文 前10條
1 趙燕燕;新型溴代阻燃劑在膠州灣濕地污染狀況及遷移轉(zhuǎn)化的研究[D];青島大學;2015年
2 董成仁;膠州灣濱海濕地CO_2通量及源/匯功能研究[D];青島大學;2015年
3 趙慧敏;春季膠州灣海水甲烷氧化速率時空變化初步研究[D];中國海洋大學;2015年
4 董文華;鐳同位素對膠州灣水體混合及海底地下水排放的示蹤研究[D];中國海洋大學;2015年
5 王雪;膠州灣三維水動力數(shù)值模擬研究[D];中國海洋大學;2014年
6 汪雅露;膠州灣沉積物—海水界面營養(yǎng)鹽的遷移特征及其影響因素解析[D];中國科學院研究生院(海洋研究所);2016年
7 趙瑾;環(huán)膠州灣河流對膠州灣水沙輸送的數(shù)值模擬[D];中國海洋大學;2007年
8 徐曉達;膠州灣東部和青島前海地質(zhì)環(huán)境及污染狀況的初步研究[D];中國海洋大學;2005年
9 白偉明;膠州灣工程地質(zhì)環(huán)境特征研究[D];中國海洋大學;2005年
10 牟森;膠州灣岸線變化對動力環(huán)境的影響[D];中國海洋大學;2009年
,本文編號:2147629
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2147629.html