自升式平臺(tái)樁土效應(yīng)與樁腿結(jié)構(gòu)構(gòu)型研究
[Abstract]:The jack up platform is an important equipment for offshore oil exploration and development. It has been widely used in the development of marine oil and gas. Due to the complex geological conditions of the seabed and the increase of the depth of the platform operation, a higher requirement for the operation safety and development cost of the jack up platform is put forward. The operation safety of the platform and the structure of the platform are optimized. Reducing the cost of development is of great significance to improving the market competitiveness of this kind of equipment. It has aroused extensive concern in the industry. Based on the "development of 350 foot jack up drilling platform" in Liaoning Province, this paper selects the bearing capacity of the submarine layered soil in the jack up platform, the depth of the platform inserting the mud into the mud, the drag resistance of the platform and the pile leg. In order to improve the safety of operation and reduce the cost of development, the following research work is carried out to carry out the following research work: 1) in view of the limitations of the traditional foundation bearing capacity calculation method under the complex submarine geological conditions, the empirical calculation method and its applicability of the ultimate bearing capacity of shallow foundation foundation are carried out. On the basis of the theory of limit equilibrium, the mechanical equilibrium of the bearing foundation is solved. The soil stress and strain behavior of the active, transition and passive areas of the foundation soil is theoretically studied by the theory of limit equilibrium. The ultimate bearing capacity of the single layer soil is studied by the calculation of the ultimate bearing capacity of the soil. Method, a new type of circular shallow foundation stand on layered ocean foundation soil, the calculation method of bearing capacity in different failure modes.2) is used to study the mechanism of interaction between pile boots and soil. The finite element model is constructed to simulate the interaction of pile and soil and the failure process of soil soil during the platform inserting pile. Considering the influence of the shape characteristics of the pile boots, the process of piling and the depth of the pits, a practical formula for the depth of mud depth is revised and a practical depth meter is given. An empirical formula, an empirical formula, numerical simulation and experimental technique are used to analyze the mud process of the pile boots, and compared with the revised standard formula calculation results. The accuracy of the finite element method calculation and the practicability of the revised common formula.3) are verified by the comparison with the revised standard formula calculation results. On the basis of pile soil interaction mechanism and flow solid coupling theory, the effect of soil movement, soil failure and pore water pressure change in typical block pile pulling process is studied based on the pile soil interaction mechanism and the flow solid coupling theory, and the empirical formula and finite element method are used to study the soil movement, soil failure and pore water pressure change during the pile pulling process of typical blocks. The effect of soil pore pressure, pile and top force on the base adsorption force is studied, and the results of the comparison and analysis of the adsorption force and the effect of the pile impact are given. The effective calculation method of the resistance of the pile pulling resistance is put forward, and the validity of the method is verified by the comparison of the actual hole pulling resistance data. .4) in view of the problem that the pile leg structure flexibility of the jack up platform is highlighted by the increase of the working water depth, the structure of the pile leg structure of the jack up platform is studied. The five component force test is carried out in the wind tunnel according to the 1/100 scale ratio model in the wind tunnel, and the wind load data of the target flat are obtained. Based on the theory of the STOKES five order wave, the wind load data are obtained. Through the SESAM software calculation, the wave flow load is obtained. Through the modal analysis, the inertia load of the DAF effect and the nonlinear effect of P- delta is obtained. Taking the total strength of the pile leg under the towing and self storage conditions as the checking condition, the spacing of the leg and the spacing of the string are discretized. The total strength of 14 types of pile legs under the storage condition is evaluated comprehensively. In order to reduce the weight of the pile legs and improve the economy, the structure of the pile legs in the existing platform is optimized and the optimized pile leg parameters are given, and the structure selection method of the truss type leg structure of the jack up platform is formed.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P742
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 嚴(yán)世華;;圓柱形樁腿方型開孔的試驗(yàn)研究(續(xù))[J];中國(guó)海洋平臺(tái);1992年03期
2 嚴(yán)世華;;圓柱形樁腿方型開孔的試驗(yàn)研究[J];中國(guó)海洋平臺(tái);1992年02期
3 唐新銘;;“渤五”鉆井船就位時(shí)樁腿強(qiáng)度分析[J];中國(guó)海洋平臺(tái);1993年02期
4 林維學(xué),董艷秋,唐友剛,華崇厚,狄惠敏,,邢延;鉆井船重返井位樁腿受力模型試驗(yàn)[J];天津大學(xué)學(xué)報(bào);1995年06期
5 殷浩澍;;自升式鉆井平臺(tái)樁腿齒條切割的解決方案和國(guó)內(nèi)發(fā)展態(tài)勢(shì)[J];金屬加工(熱加工);2010年04期
6 任貴永;;自升式平臺(tái)拖航工況樁腿設(shè)計(jì)標(biāo)準(zhǔn)研究[J];海洋工程;1983年04期
7 孫銀華;孫濤;張海如;;液壓提升式樁腿建造淺析[J];機(jī)械工程師;2014年01期
8 郝林;陳濤;;自升式平臺(tái)樁腿連接可靠性研究[J];中國(guó)海洋平臺(tái);2012年03期
9 周衛(wèi)鳴;;基于鋅加涂層的自升式海洋平臺(tái)樁腿防護(hù)[J];科技創(chuàng)新導(dǎo)報(bào);2013年02期
10 任貴永,李淑琴;插樁自升式平臺(tái)樁腿結(jié)構(gòu)分析[J];海洋通報(bào);1985年01期
相關(guān)會(huì)議論文 前10條
1 劉東玉;關(guān)幼耕;暢元江;;三種典型樁腿耦合裝置虛擬設(shè)計(jì)[A];2010年度海洋工程學(xué)術(shù)會(huì)議論文集[C];2010年
2 李沁溢;宋友良;;自升式平臺(tái)樁腿建造工藝淺析[A];中國(guó)造船工程學(xué)會(huì)造船工藝學(xué)術(shù)委員會(huì)殼舾涂一體化學(xué)組2008年學(xué)術(shù)會(huì)議論文集[C];2008年
3 潘志明;張文昊;羊字軍;陳廣寧;;海洋石油921自升式鉆井平臺(tái)樁腿建造工藝[A];'2011全國(guó)鋼結(jié)構(gòu)學(xué)術(shù)年會(huì)論文集[C];2011年
4 張劍波;;冰區(qū)自升式平臺(tái)樁腿的安全評(píng)估[A];渤海灣油氣勘探開發(fā)工程技術(shù)論文集(第十集)[C];2005年
5 沈楠楠;靳偉亮;閔祥軍;朱大喜;汪彬;;200英尺自升式鉆井船樁腿齒條焊接施工技術(shù)[A];中國(guó)海洋石油總公司第三屆海洋工程技術(shù)年會(huì)論文集[C];2012年
6 夏天;張世聯(lián);鄭軼刊;彭大煒;;樁腿耦合緩沖器有限元分析求解的三種方法研究[A];中國(guó)鋼結(jié)構(gòu)協(xié)會(huì)海洋鋼結(jié)構(gòu)分會(huì)2010年學(xué)術(shù)會(huì)議暨第六屆理事會(huì)第三次會(huì)議論文集[C];2010年
7 石強(qiáng);戴挺;張佳寧;馬延德;;自升式鉆井平臺(tái)樁腿總強(qiáng)度分析研究[A];中國(guó)鋼結(jié)構(gòu)協(xié)會(huì)海洋鋼結(jié)構(gòu)分會(huì)2010年學(xué)術(shù)會(huì)議暨第六屆理事會(huì)第三次會(huì)議論文集[C];2010年
8 董寶輝;李拓夷;王銘飛;張大鵬;趙大鵬;;自升式鉆井船樁腿疲勞分析[A];2009年度海洋工程學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2009年
9 林;;張佳寧;馬延德;;自升式鉆井平臺(tái)樁腿疲勞分析[A];2011年中國(guó)造船工程學(xué)會(huì)優(yōu)秀論文集[C];2012年
10 林海花;張佳寧;馬延德;;自升式鉆井平臺(tái)樁腿疲勞分析[A];2010年度海洋工程學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 記者 甘豐錄;海油工程攻克平臺(tái)樁腿焊接難關(guān)[N];中國(guó)船舶報(bào);2009年
2 于莘明;六腿“怪物”來自何處?[N];科技日?qǐng)?bào);2003年
3 趙緒杰;海洋工程建造實(shí)現(xiàn)工藝突破[N];中國(guó)船舶報(bào);2006年
4 陳佳南;國(guó)內(nèi)首套自升式平臺(tái)升降系統(tǒng)誕生[N];中國(guó)船舶報(bào);2014年
5 記者 劉志良;東方華晨訂造10座自升式平臺(tái)[N];中國(guó)船舶報(bào);2014年
6 張楠;大連船務(wù)高精度切割自升式平臺(tái)懸臂梁超厚板[N];中國(guó)船舶報(bào);2013年
7 記者 甘豐錄;遼河石油裝備自主設(shè)計(jì)300英尺自升式平臺(tái)開建[N];中國(guó)船舶報(bào);2011年
8 鐘文;中遠(yuǎn)關(guān)西為自升式平臺(tái)提供防腐涂料[N];中國(guó)船舶報(bào);2014年
9 季宏程;國(guó)產(chǎn)自升式平臺(tái)提升系統(tǒng)研發(fā)成功[N];中國(guó)船舶報(bào);2010年
10 王敏剛;全球首座可自航的自升式海洋平臺(tái)交付[N];中國(guó)船舶報(bào);2010年
相關(guān)博士學(xué)位論文 前5條
1 朱亞洲;自升式平臺(tái)樁土效應(yīng)與樁腿結(jié)構(gòu)構(gòu)型研究[D];哈爾濱工程大學(xué);2015年
2 趙亞楠;海上自升式安裝船環(huán)境載荷分析與樁腿驅(qū)動(dòng)控制研究[D];哈爾濱工程大學(xué);2012年
3 于昊;非線性載荷作用下自升式平臺(tái)結(jié)構(gòu)強(qiáng)度評(píng)估方法[D];哈爾濱工程大學(xué);2012年
4 任憲剛;深淺海自升式平臺(tái)結(jié)構(gòu)非線性分析方法研究[D];哈爾濱工程大學(xué);2012年
5 史永晉;分體自升式平臺(tái)總體性能及對(duì)接動(dòng)態(tài)特性研究[D];中國(guó)石油大學(xué)(華東);2012年
相關(guān)碩士學(xué)位論文 前10條
1 趙海洋;自升式海洋平臺(tái)樁腿疲勞壽命研究[D];江蘇科技大學(xué);2015年
2 張坤;高強(qiáng)度大厚度樁腿板材切割工藝力學(xué)行為研究[D];江蘇科技大學(xué);2015年
3 洪軍杰;基于數(shù)值模擬的桁架式樁腿管節(jié)點(diǎn)裝焊工藝研究[D];江蘇科技大學(xué);2015年
4 高茜;自升式雙體風(fēng)電安裝船波浪運(yùn)動(dòng)及樁腿設(shè)計(jì)分析研究[D];大連理工大學(xué);2015年
5 劉國(guó)昊;自升式海洋平臺(tái)樁腿樁靴的數(shù)值分析[D];西南石油大學(xué);2012年
6 吳海濤;自升式海洋平臺(tái)樁腿焊縫裂紋擴(kuò)展模擬及壽命預(yù)測(cè)[D];東北石油大學(xué);2015年
7 奚勇;自升式平臺(tái)樁腿節(jié)距優(yōu)化及強(qiáng)度分析[D];江蘇科技大學(xué);2016年
8 呂國(guó)興;自升式海洋平臺(tái)樁腿的結(jié)構(gòu)強(qiáng)度分析及優(yōu)化設(shè)計(jì)[D];浙江海洋大學(xué);2016年
9 劉麗紅;樁腿耦合裝置的性能研究[D];上海交通大學(xué);2014年
10 劉英杰;自升式平臺(tái)樁腿的受力分析[D];哈爾濱工程大學(xué);2004年
本文編號(hào):2141606
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2141606.html