雙水翼聯(lián)動(dòng)捕獲潮流能發(fā)電系統(tǒng)設(shè)計(jì)與水動(dòng)力分析
[Abstract]:In order to control environmental pollution, our government has paid more and more attention to the development and utilization of clean and renewable energy in recent years. As a kind of ocean energy, tidal current energy has great development value for our country. In this paper, a kind of capture power generation system with two hydrofoil linkage oscillations is studied, which provides reliable theoretical support for the design and development of power flow generator in the future. The oscillatory motion of hydrofoil can be divided into vertical heave motion and pitching motion around pitching axis. The hydrofoil linkage system can not only convert the hydrodynamic energy captured by the hydrofoil into the mechanical energy of the generator, but also make the power generation system have good self-sustaining and self-starting performance. In order to study the performance of the dual hydrofoil linkage system, the following research work is done in this paper: a dual hydrofoil coupled capture power generation system is proposed, and the basic working principle and the basic concept of the hydrofoil energy capture system are introduced. The hydrodynamic performance of hydrofoil is discussed based on CFD technology. According to the analysis results, the airfoil is selected as NACA0018, the conversion frequency is 0.14 and the pitch angle is 75 擄as the basic parameters for the design of the combined capture tidal current generation system with double hydrofoil. Based on Theodoersen theory, a mathematical model of hydrodynamic performance of hydrofoil with large angle of attack is established, and a simulation model is designed on Simulink platform. Based on the model, the hydrodynamic characteristics of hydrofoil NACA0018 are predicted. The results are compared with the prediction results of the numerical simulation model based on fluent software. The results show that the mathematical model of hydrodynamic performance of oscillating hydrofoil with large angle of attack can be used to calculate hydrodynamic coefficient and feedback control in real time. The hydraulic transmission system is designed according to the principle of the dual hydrofoil coupled capture power generation system. The hydraulic system model is constructed in the AMESim software, and the joint simulation model is constructed by the data interface and the Simulink platform. The joint model is used to study the influence of the inner diameter of the lifting hydraulic cylinder on the hydrofoil energy capture and hydraulic system, and the self-sustaining performance of the hydrofoil linkage system is studied by applying disturbance. When the power of generating system is 2 kW, the oscillation period is TX 2 s, the amplitude of chord length and heave motion is 0.5 m, for the three groups of models, the inner diameter of the lifting hydraulic cylinder is 25mm / 30mm and 35mm, the smaller the inner diameter, the more the system's energy capture efficiency. The higher the transmission efficiency is, the 28.73% energy capture efficiency and 69.83% transmission efficiency can be obtained, and the disturbance force with half period and one period is applied to the hydrofoil oscillation process, and the amplitude is the maximum lift force. The results show that under the positive and negative disturbances, the maximum lift force is applied to the hydrofoil oscillation process. The dual hydrofoil linkage system can return to normal oscillatory motion after 3 cycles.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P743.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐娜;;極速水翼帆船[J];科學(xué)之友(上旬);2010年06期
2 張博;王國(guó)玉;黃彪;張敏弟;;柵中空化水翼的水動(dòng)力特性[J];工程熱物理學(xué)報(bào);2009年06期
3 時(shí)素果;王國(guó)玉;黃彪;;繞柵中水翼空化流動(dòng)的數(shù)值和實(shí)驗(yàn)研究[J];力學(xué)學(xué)報(bào);2011年03期
4 何國(guó)毅;張星;張曙光;;擺動(dòng)水翼繞流的數(shù)值研究[J];力學(xué)學(xué)報(bào);2010年01期
5 郝宗睿;王樂勤;吳大轉(zhuǎn);;水翼非定?栈鲌(chǎng)的數(shù)值模擬[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2010年05期
6 張曉慶;王志東;張振山;;二維擺動(dòng)水翼仿生推進(jìn)水動(dòng)力性能研究[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);2006年05期
7 張銘鈞;劉曉白;儲(chǔ)定慧;郭紹波;徐建安;;仿生水翼推進(jìn)系統(tǒng)研制與實(shí)驗(yàn)研究[J];哈爾濱工程大學(xué)學(xué)報(bào);2011年05期
8 楊孝忠,李百齊,朱炳泉;粘性流中的二維興波水翼水動(dòng)力特性研究[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);1998年02期
9 朱炳泉,李百齊,楊孝忠;二維興波水翼水動(dòng)力預(yù)報(bào)的渦分布法[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);1996年05期
10 何曉暉;李志剛;程建生;魏鋒利;;粘性流中二維水翼局部空泡流的數(shù)值模擬[J];艦船科學(xué)技術(shù);2007年01期
相關(guān)會(huì)議論文 前8條
1 倪陽;魏澤;邱耿耀;;二維振蕩水翼推進(jìn)效能數(shù)值模擬及分析[A];第二十五屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第十二屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(上冊(cè))[C];2013年
2 楊亮;蘇玉民;秦再白;;黏性流場(chǎng)中二維擺動(dòng)水翼的水動(dòng)力分析[A];第七屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第十九屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集(下冊(cè))[C];2005年
3 王小川;郭棟;;新三峽高速旅游快巴新興產(chǎn)業(yè)開發(fā)——“親舟Ⅱ型”全通透三水翼觀光游船研制[A];第十屆全國(guó)內(nèi)河船舶與航運(yùn)技術(shù)學(xué)術(shù)會(huì)議論文集[C];2006年
4 任俊生;楊鹽生;;對(duì)高速水翼雙體船靜水中運(yùn)動(dòng)的再研究[A];2002航海實(shí)用新技術(shù)論文集[C];2002年
5 胡子俊;吳乘勝;蘭波;張華;;二維水翼推力特性CFD計(jì)算研究[A];第十一屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十四屆全國(guó)水動(dòng)力學(xué)研討會(huì)并周培源誕辰110周年紀(jì)念大會(huì)文集(下冊(cè))[C];2012年
6 陳建宏;吳炳承;;自由液面附近的二維水翼空化流場(chǎng)分析[A];第二十一屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第八屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨兩岸船舶與海洋工程水動(dòng)力學(xué)研討會(huì)文集[C];2008年
7 趙偉國(guó);張凌新;邵雪明;;三維水翼空化流場(chǎng)的數(shù)值模擬研究[A];第二十三屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第十屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集[C];2011年
8 翟樹成;張軍;趙峰;陸林章;;應(yīng)用TR—PIV技術(shù)進(jìn)行水翼尾流TILS測(cè)量分析[A];第二十三屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第十屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集[C];2011年
相關(guān)重要報(bào)紙文章 前4條
1 周永峰;周國(guó)東;夢(mèng)系水翼馳遠(yuǎn)方[N];中國(guó)水運(yùn)報(bào);2002年
2 記者 桂雪琴;全通透三水翼游船從概念走向?qū)嵈琜N];中國(guó)船舶報(bào);2006年
3 記者 李強(qiáng) 實(shí)習(xí)生 劉偉;福州臺(tái)北間將開行水翼噴射船[N];福州日?qǐng)?bào);2009年
4 記者 蔡曉蕓;無錫建造首批“三峽游”三水翼游船[N];華東旅游報(bào);2006年
相關(guān)博士學(xué)位論文 前2條
1 儲(chǔ)定慧;水翼法推進(jìn)機(jī)理及仿生系統(tǒng)研究[D];哈爾濱工程大學(xué);2009年
2 封培元;基于新型節(jié)能推進(jìn)水翼的船舶耐波與操縱性能改進(jìn)研究[D];上海交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 李鍵輝;雙水翼耦合振蕩捕獲潮流能發(fā)電系統(tǒng)水動(dòng)力性能研究[D];山東大學(xué);2015年
2 劉富娟;仿生水翼推進(jìn)的數(shù)值模擬和實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 高遠(yuǎn);彈性水翼非定?栈骷ふ駝(dòng)特性研究[D];北京理工大學(xué);2016年
4 劉雪言;兩棲火炮伸縮收放水翼技術(shù)研究[D];中北大學(xué);2017年
5 黃鳳躍;雙水翼聯(lián)動(dòng)捕獲潮流能發(fā)電系統(tǒng)設(shè)計(jì)與水動(dòng)力分析[D];山東大學(xué);2017年
6 劉海賓;平行式雙水翼潮流能發(fā)電系統(tǒng)能量轉(zhuǎn)換與動(dòng)態(tài)特性研究[D];山東大學(xué);2017年
7 祝文倩;基于有限元法的二維水翼性能預(yù)報(bào)[D];華中科技大學(xué);2007年
8 閆娜;仿海龜水翼推進(jìn)性能分析[D];哈爾濱工程大學(xué);2012年
9 王俊芳;二維振蕩水翼的水動(dòng)力特性分析[D];中國(guó)海洋大學(xué);2013年
10 祝美霞;水翼輔助推進(jìn)船舶波浪中運(yùn)動(dòng)和增阻特性研究[D];上海交通大學(xué);2014年
,本文編號(hào):2135767
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2135767.html