西北太平洋強(qiáng)臺(tái)風(fēng)頻數(shù)與ENSO年際聯(lián)系的年代際變化機(jī)理研究
本文選題:西北太平洋 + 強(qiáng)TC頻數(shù); 參考:《南京信息工程大學(xué)》2014年碩士論文
【摘要】:本文主要利用美國(guó)國(guó)家環(huán)境預(yù)報(bào)中心(National Centers for Environmental Prediction,簡(jiǎn)稱NCEP)及美國(guó)國(guó)家大氣研究中心(National Center for Atmospheric Research,簡(jiǎn)稱NCAR)1949-2008年的月平均再分析資料以及英國(guó)哈德萊觀測(cè)中心(Hadley Centre)月平均海平面溫度(SST)和美國(guó)關(guān)島聯(lián)合臺(tái)風(fēng)警報(bào)中心(JointTyphoon Warning Center,簡(jiǎn)稱JTWC)每6小時(shí)定位時(shí)次best-track資料,分析西北太平洋強(qiáng)熱帶氣旋(TC4、5)年頻數(shù)與Nino3.4指數(shù)相關(guān)關(guān)系年代際變化的原因及可能機(jī)理。我們研究發(fā)現(xiàn)在1949-1968(第一階段)和1989-2008(第三階段)年間強(qiáng)TC年頻數(shù)與厄爾尼諾-南方濤動(dòng)(El Nino-Southern Oscillation, ENSO)關(guān)系密切分別為0.69和0.70,而在1969-1988年間(第二階段)兩者相關(guān)只有0.07。而且在第二階段,強(qiáng)TC頻數(shù)偏少,平均每年4.85個(gè),第一、三階段強(qiáng)TC頻數(shù)卻偏多,年平均分別為7.60和7.75個(gè)。不僅強(qiáng)TC年頻數(shù)以及與ENSO的相關(guān)關(guān)系在第二階段發(fā)生轉(zhuǎn)變,其生成位置和路徑在第二階段與第一、三階段也有差異,第二階段,強(qiáng)TC主要生成在160°E以東,20°N以南,路徑以西移為主,而第一、三階段,強(qiáng)TC主要生成范圍偏大,向北向東擴(kuò)展,路徑以向北轉(zhuǎn)向偏多。以上的年代際變化的可能機(jī)理,通過(guò)分析結(jié)果表明:第二階段與第一階段相比強(qiáng)TC頻數(shù)偏少,且與ENSO的相關(guān)關(guān)系較弱,主要是因?yàn)榈诙A段在8-10月印度洋海溫明顯比第一階段偏暖,導(dǎo)致西北太平洋和熱帶中太平洋地區(qū)有異常的反氣旋,同時(shí)較高海平面氣壓和對(duì)流層輸出溫度,較低的中層比濕,這些因子對(duì)第二階段的臺(tái)風(fēng)最大可能強(qiáng)度(Maximum Potential Intensity, MPI)指數(shù)在整個(gè)中北太平洋和南海地區(qū)的負(fù)異常均有貢獻(xiàn)。此外,中層相對(duì)水汽較少、垂直風(fēng)切變較強(qiáng)和高層輻合底層輻散,這些要素的變化導(dǎo)致第二階段西北太平洋熱帶氣旋生成東南象限的潛在生成指數(shù)(Genesis Potential Index, GPI)指數(shù)西北-東南走向的負(fù)異常。因此,在第二階段的各個(gè)因子都不利于TC的生成和發(fā)展。對(duì)于生成位置與路徑的轉(zhuǎn)變,可以從引導(dǎo)氣流看出:第二階段赤道附近存在異常的東風(fēng)氣流和反氣旋環(huán)流,導(dǎo)致強(qiáng)TC生成位置偏西偏南,路徑以西移為主。而對(duì)比第三階段與第二階段,第三階段8—10月在赤道中太平洋SST明顯偏暖,在熱源的西北側(cè)即在西北太平洋激發(fā)氣旋型Rossby波,從而產(chǎn)生氣旋式環(huán)流,是第三階段強(qiáng)臺(tái)風(fēng)頻數(shù)增多,且與ENSO關(guān)系密切的原因,也對(duì)MPI指數(shù)的正異常有較大的貢獻(xiàn)。MPI指數(shù)在赤道中太平洋較大,對(duì)于MPI指數(shù)的影響因子,除了SST,中層比濕的貢獻(xiàn)也較大。此外,對(duì)于GPI指數(shù)的影響因子,中層相對(duì)濕度偏大,850hPa絕對(duì)渦度為正異常,這些要素導(dǎo)致第三階段的GPI指數(shù)在西北太平洋東南部的正值中心。對(duì)于路徑和生成位置,從引導(dǎo)氣流可以看到,西北太平洋東南部存在較大的氣旋性環(huán)流和向西向北的氣流,有利于TC路徑的轉(zhuǎn)折,生成位置也向東向北擴(kuò)展。同時(shí)還對(duì)不同類型的ENSO現(xiàn)象進(jìn)行了分析,結(jié)果表明:中太平洋增暖CPW比東太平洋增暖EPW更有利于TC的發(fā)展,強(qiáng)TC頻數(shù)偏多,而東太平洋變冷EPC與東太平洋增暖EPW相比則EPC不利于TC的增強(qiáng),強(qiáng)TC頻數(shù)偏少。此外,本文使用ECHAM4.6版模式,對(duì)以上年代際變化的可能機(jī)理通過(guò)一個(gè)控制試驗(yàn)和三個(gè)敏感性試驗(yàn)來(lái)模擬,一個(gè)控制性試驗(yàn)是使用觀測(cè)到的氣候月平均海溫場(chǎng)進(jìn)行的,三個(gè)敏感性試驗(yàn)分別為:第一階段強(qiáng)迫熱帶印度洋增暖(TIO)、第二階段強(qiáng)迫中太平洋增暖(CP)和熱帶印度洋和中太平洋同時(shí)增暖(TIO-CP)。分析結(jié)果表明:第一階段與第二階段的變化主要是因?yàn)榈诙A段在8-10月印度洋海溫明顯比第一階段偏暖,而對(duì)比第二階段與第三階段的變化,則是由于第三階段8-10月在赤道中太平洋SST明顯偏暖。
[Abstract]:In this paper, the monthly mean reanalysis data of the 1949-2008 years of the National Center for environmental prediction (National Centers for Environmental Prediction, abbreviated as NCEP) and the National Center for Atmospheric Research (National Center for Atmospheric Research, for short) and the monthly mean sea level of the UK's Hadley observation center are mainly used. Temperature (SST) and the United States Guam Joint Typhoon Warning Center (JointTyphoon Warning Center, abbreviated as JTWC) locate the time best-track data every 6 hours, analyze the causes and energy mechanism of the interdecadal variation of the annual frequency of the Northwest Pacific strong tropical cyclone (TC4,5) and the Nino3.4 index, and we have found that in the 1949-1968 (first stage) and 198. The strong TC year frequency in the 9-2008 (third stage) years and the El Nino Southern Oscillation (El Nino-Southern Oscillation, ENSO) are closely related to 0.69 and 0.70 respectively, while in the 1969-1988 years (second stage) the correlation is only 0.07. and in the second stage, the strong TC frequency is less, the average per year is 4.85, and the strong TC frequency is much more than the first, third stage. They are 7.60 and 7.75 respectively. Not only the strong TC year frequency and the correlation with ENSO change in the second stage, but also the formation position and path are also different in the second stage and the first, third stage. The second stage, the strong TC is mainly formed in the east of 160 E, 20 degree N to the west, and the path is moved westward, while the first, third stage, the strong TC generation range. The second stage of the second stage is less than the first stage, and the relative relationship with the ENSO is weak, mainly because the sea temperature in the India ocean is obviously warmer than the first stage in the second stage in the 8-10 month, leading to the northwest too much. There are abnormal anticyclones in the Pingyang and the mid tropical Pacific regions, with higher sea level and tropospheric output temperatures and lower middle level specific humidity. These factors contribute to the negative anomalies of the maximum possible intensity (Maximum Potential Intensity, MPI) of the second stage of typhoon in the Taiping ocean and the South China Sea. The relative water vapor is relatively less, the vertical wind shear is stronger and the high rise convergence bottom divergence. These changes lead to the negative anomaly of the Genesis Potential Index (GPI) index of the southeast quadrant of the northwestern Pacific tropical cyclone in the second stage. Therefore, all the factors in the second stage are not conducive to TC. Generation and development. For the transformation of the generating position and path, it can be seen from the guiding airflow that there is an abnormal easterly flow and anticyclone circulation near the second stage of the equator in the second stage, which leads to the westward deviation of the strong TC formation position and the main path westward, while the third and second stages are compared, and the third stage of the equatorial Pacific is obvious in the third stage from 8 to October. In the northwestern side of the heat source, the cyclone type Rossby wave is excited in the northwest side of the heat source, which produces cyclonic circulation, which is the third stage strong typhoon frequency, which is closely related to the ENSO, and also has great contribution to the positive anomaly of the MPI index. The.MPI index is larger in the equator and the Taiping ocean in the equator, and the factors affecting the MPI index are in addition to SST, The contribution of the layer to the humidity is also larger. In addition, the relative humidity of the middle layer is large and the absolute vorticity of the 850hPa is positive. These factors lead to the GPI index of the third stage in the positive center of the southeast of the Northwest Pacific. For the path and the generating position, the south-east of the Northwest Pacific can be seen larger from the guiding air flow. The cyclonic circulation and westward northward flow are beneficial to the turning of the TC path and the expansion of the generating position from the east to the north. At the same time, the different types of ENSO phenomena are also analyzed. The results show that the warmer CPW in the central Pacific is more conducive to the development of TC than the eastern Pacific, and that the strong TC frequency is more than that of the East Pacific, while the East Pacific is cooled EPC and the East Pacific. Compared with the increase of EPW, EPC is not conducive to the enhancement of TC, and the strong TC frequency is less. In addition, this paper uses the ECHAM4.6 model to simulate the possible mechanism of the interdecadal change through a control test and three sensitivity tests. A controlled trial is carried out using the observed climate monthly mean sea temperature field, and the three sensitivity tests are respectively The first phase forced the tropical India ocean warming (TIO), the second phase forced the central Pacific warming (CP) and the tropical India and the central Pacific Ocean heating (TIO-CP). The results showed that the first and second stages were mainly due to the second stage in the 8-10 month India ocean temperature obviously warmer than the first stage, and the contrast second. The change of stage and third stage is due to the obvious warming of SST in the equatorial central Pacific in the third phase and 8-10 months.
【學(xué)位授予單位】:南京信息工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P444;P732
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃剛;屈俠;胡開明;;The Impact of the Tropical Indian Ocean on South Asian High in Boreal Summer[J];Advances in Atmospheric Sciences;2011年02期
2 陳光華;黃榮輝;;西北太平洋低頻振蕩對(duì)熱帶氣旋生成的動(dòng)力作用及其物理機(jī)制[J];大氣科學(xué);2009年02期
3 袁媛;李崇銀;;熱帶印度洋海溫異常不同模態(tài)對(duì)南海夏季風(fēng)爆發(fā)的可能影響[J];大氣科學(xué);2009年02期
4 曾剛;孫照渤;林朝暉;倪東鴻;;不同海域海表溫度異常對(duì)西北太平洋副熱帶高壓年代際變化影響的數(shù)值模擬研究[J];大氣科學(xué);2010年02期
5 田華;李崇銀;楊輝;;大氣季節(jié)內(nèi)振蕩對(duì)西北太平洋臺(tái)風(fēng)路徑的影響研究[J];大氣科學(xué);2010年03期
6 吳國(guó)雄,孟文;赤道印度洋—太平洋地區(qū)海氣系統(tǒng)的齒輪式耦合和ENSO事件 I.資料分析[J];大氣科學(xué);1998年04期
7 張加春;饒?jiān)铞?陳麗珍;施曼華;謝啟杰;;1884~2006年西北太平洋熱帶氣旋活動(dòng)特征[J];廣東氣象;2008年02期
8 黃勇;李崇銀;王穎;宋彬;;近百年西北太洋熱帶氣旋頻數(shù)變化特征與ENSO的關(guān)系[J];海洋預(yù)報(bào);2008年01期
9 余帆;李培;李向軍;張濤;;近60年西北太平洋臺(tái)風(fēng)年代際變化特征及成因的初步分析[J];海洋預(yù)報(bào);2012年01期
10 黃勇;李崇銀;王穎;;西北太平洋生成熱帶氣旋的年代際變化[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
,本文編號(hào):2106907
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2106907.html