基于沙蠶多功能群匹配的濕地微宇宙對(duì)石油烴去除效果研究
本文選題:石油污染 + 濕地微宇宙 ; 參考:《大連海洋大學(xué)》2015年碩士論文
【摘要】:隨著石油污染的日益嚴(yán)重,其修復(fù)問題越來越受到重視。生物修復(fù)技術(shù)因其成本低、效率高、速度快和不易二次污染等優(yōu)點(diǎn),已成為現(xiàn)場(chǎng)去除石油烴污染的重要選擇途徑。本研究針對(duì)我國(guó)近岸灘涂濕地石油污染生境修復(fù)的科學(xué)問題,通過濕地微宇宙方法模擬海洋潮間帶溢油污染環(huán)境,并構(gòu)建基于沙蠶的生物多功能群匹配的原位生物修復(fù)模式,利用超聲-熒光分光光度法和氣-質(zhì)聯(lián)用儀(GC-MS)分析沙蠶、翅堿蓬和降油微生物等不同修復(fù)生物聯(lián)合修復(fù)組合對(duì)石油烴的降解率,揭示沙蠶的生物擾動(dòng)作用對(duì)翅堿蓬和降油細(xì)菌體系去除、降解石油烴的強(qiáng)化效應(yīng),旨在為海洋潮間帶溢油污染的生物修復(fù)提供參考和數(shù)據(jù)支持。本論文主要研究結(jié)果如下:(1)利用正交實(shí)驗(yàn)分析了石油污染底質(zhì)超聲萃取方法中的各個(gè)條件因素對(duì)石油烴萃取效率的影響,確定了最適石油污染底質(zhì)的超聲萃取的條件,萃取劑為二氯甲烷,萃取溫度為30℃,萃取時(shí)間為15min,液/固比為6:1。比較了不同濃度石油中該方法的萃取效率,發(fā)現(xiàn)該超聲萃取法在濃度較高的石油污染土壤的萃取中效果更好,且萃取兩次為最優(yōu)選擇,通過兩次萃取,2㳠、1㳠、0.5㳠和0.1㳠的石油污染底質(zhì)的萃取率分別達(dá)到90.09㳠、88.86㳠、82.65㳠和85.71㳠,萃取效果良好。(2)在實(shí)驗(yàn)室條件下模擬鹽沼濕地生態(tài)系統(tǒng),應(yīng)用濕地微宇宙和慢性毒性實(shí)驗(yàn)方法,構(gòu)建了沙蠶-翅堿蓬-降油細(xì)菌功能群匹配的生物修復(fù)模式,進(jìn)行石油污染修復(fù)實(shí)驗(yàn)。實(shí)驗(yàn)設(shè)置3個(gè)土壤石油濃度,即500mg/kg、1500mg/kg和3000mg/kg,分別記為I、Ⅱ和III;同時(shí),設(shè)置了4種生物功能群組合配置,分別為降油細(xì)菌組(B)、沙蠶+降油細(xì)菌組(NB)、翅堿蓬+降油細(xì)菌組(SB),沙蠶+翅堿蓬+降油細(xì)菌組(NSB),并設(shè)置空白對(duì)照組,記為C。結(jié)果表明,經(jīng)過70d的實(shí)驗(yàn),各生物修復(fù)組合處理下的不同石油污染底質(zhì)的石油降解率均顯著高于C組(P0.05)。其中,NSB組70d后I、Ⅱ和III的石油降解率分別達(dá)到51.91%、47.78%和40.59%,顯著高于NB組和SB組(P0.05)。另外,NB組和SB組在Ⅱ和III濃度實(shí)驗(yàn)中對(duì)石油降解率顯著高于B組(P0.05);而在I中,這三個(gè)修復(fù)組合的石油降解率差異雖未見顯著,但仍依次為NB組SB組B組。在不同濃度的石油污染實(shí)驗(yàn)中,各生物修復(fù)組合石油降解速率在實(shí)驗(yàn)前30d都是呈現(xiàn)遞增趨勢(shì),石油降解速率最快的時(shí)間段是15d~30d,其中NSB組在不同濃度處理組的石油降解速率均高于其他修復(fù)組合,分別達(dá)到1.14%/d、1.20%/d和1.26%/d。而在30d~70d的實(shí)驗(yàn)中,各生物修復(fù)組合石油降解速率則明顯下降。(3)利用GC-MS對(duì)正構(gòu)烴的降解情況進(jìn)行研究,結(jié)果表明,各處理組正構(gòu)烴的降解率均隨碳鏈長(zhǎng)度的增大而明顯減小。其中,NSB組在不同石油污染濃度底質(zhì)中各階段各組分的降解率均高于其他組合,至70d時(shí),在不同濃度處理組中正構(gòu)烴平均降解率分別達(dá)到22.89%(I)、25.12%(II)和24.02%(III)。各處理組正構(gòu)烴降解率均顯著高于與對(duì)照組(P0.05),其降解率隨底質(zhì)石油污染濃度的增加而增加。另外,SB組在濃度III中的平均降解率高于NB組,分別為18.38%和15.01%。B組的正構(gòu)烴降解率則隨石油污染濃度的增加而降低,分別為15.65%(I),13.81%(II)和10.04%(III)。(4)對(duì)多環(huán)芳烴的降解效果研究結(jié)果表明,各處理組合對(duì)于多環(huán)芳烴的降解效果隨之其環(huán)數(shù)增多而明顯降低。就降解效果而言,NSB組最佳,B組最低,如至70d時(shí),NSB組各石油濃度下多環(huán)芳烴平均降解率分別達(dá)到54.93%,59.53%和47.68%;。NB組在濃度I中的降解率高于SB組,但在濃度Ⅱ和III中則SB組高于NB組,NB組和SB組在各個(gè)濃度組中多環(huán)芳烴的平均降解率分別為49.12%,50.08%,38.19%和45.04%,52.77%,41.45%。各生物處理組均較空白對(duì)照組差異顯著(P0.05),后者僅為9.37%,13.93%和19.00%。
[Abstract]:With the increasingly serious oil pollution, the remediation problem has been paid more and more attention. The bioremediation technology has become an important choice for the removal of petroleum hydrocarbon pollution because of its advantages of low cost, high efficiency, fast speed and not easy two pollution. This study aims at the scientific problems of the remediation of petroleum polluted habitats in coastal wetland of China. The wetland micro cosmos method simulated the oil spill environment in the intertidal zone, and constructed the in situ bioremediation model based on the biological multi-functional group matching of the sand worm. The ultrasonic fluorescence spectrophotometry and gas chromatography-mass spectrometry (GC-MS) were used to analyze the degradation of petroleum hydrocarbon by the combination of sand worm, Aaqa winged and oil reducing microorganisms. In order to provide reference and data support for the bioremediation of oil pollution in the intertidal zone, the main results of this paper are as follows: (1) using orthogonal experiments to analyze the various methods of ultrasonic extraction of oil contaminated bottom. The conditions for the extraction efficiency of petroleum hydrocarbon are determined by the conditional factors. The condition of ultrasonic extraction of the best oil pollution base is determined. The extraction agent is dichloromethane, the extraction temperature is 30, the extraction time is 15min, the liquid / solid ratio is 6:1., and the extraction efficiency of this method is compared with the different concentration of oil. It is found that the ultrasonic extraction method is in the high concentration of oil pollution. The extraction efficiency of the soil is better, and the extraction two times is the best choice. Through two extraction, 2?, 1?, 0.5? And 0.1? Oil pollution base extraction rate is 90.09? 88.86? 82.65? And 85.71? Well. (2) in the laboratory conditions, model salt marsh wetland ecosystem, the application of wetland microcosm and chronic toxicity experimental methods, construction A bioremediation model of the functional group matching the functional group of salnworm - aaaaaaaeda - oil - reducing bacteria was built, and the experiment was carried out to repair the oil pollution. The experiment set 3 soil oil concentrations, 500mg/kg, 1500mg/kg and 3000mg/kg, respectively, I, II and III, respectively, and set up 4 kinds of biological functional group combination, respectively, the oil reducing bacteria group (B), the sand worm + oil reducing bacteria group (NB), SB, sand worm + pppppppppnus + oil reducing bacteria group (NSB), and set up a blank control group, the result of C. showed that after 70D experiment, the petroleum degradation rate of different oil pollution base was significantly higher than that of C group (P0.05). The petroleum degradation rate of I, II and III of NSB group was 51.9 after 70D, respectively. 1%, 47.78% and 40.59% were significantly higher than group NB and group SB (P0.05). In addition, the oil degradation rate in group NB and SB group was significantly higher than that in B group (P0.05) in the concentration experiment of II and III, while in I, the difference in oil degradation rate of these three repair combinations was not significant, but it was still in SB group B group in the NB group. The rate of combined petroleum degradation is increasing in 30d before the experiment, and the fastest time of petroleum degradation is 15d~30d. The petroleum degradation rate of NSB group in different concentration treatment groups is higher than that of other remediation combinations, and it reaches 1.14%/d, 1.20%/d and 1.26%/d. respectively. In the experiment of 30d~70d, the petroleum degradation rate of various bioremediation combinations (3) the degradation of normal hydrocarbon was studied by GC-MS. The results showed that the degradation rate of normal hydrocarbon in each treatment group decreased obviously with the increase of the length of carbon chain. Among them, the degradation rate of each component in each stage of the NSB group was higher than that of the other combinations, and at the time of 70D, it was in the different concentration treatment groups. The average degradation rate of normal hydrocarbon is 22.89% (I), 25.12% (II) and 24.02% (III). The degradation rate of normal hydrocarbon in each treatment group is significantly higher than that of the control group (P0.05). The degradation rate increases with the increase of the base oil pollution concentration. In addition, the average degradation rate of SB group in the concentration III is higher than that of the NB group, and the normal hydrocarbon degradation in the group of 18.38% and 15.01%.B, respectively. The rate decreased with the increase of oil pollution concentration, 15.65% (I), 13.81% (II) and 10.04% (III). (4) the degradation effect of polycyclic aromatic hydrocarbons (PAH) showed that the degradation effect of polycyclic aromatic hydrocarbons (PAH) was greatly reduced by the increase of its ring number. As for the degradation effect, the NSB group was the best and the B group was the lowest, such as the NSB group stone. The average degradation rate of polycyclic aromatic hydrocarbons in oil concentration reached 54.93%, 59.53% and 47.68%, respectively, and the degradation rate in.NB group was higher than that in SB group, but in concentration II and III, SB group was higher than NB group. The average degradation rate of polycyclic aromatic hydrocarbons in NB group and SB group were 49.12%, 50.08%, 38.19% and 45.04%, 52.77% and 41.45%. respectively. Compared with the blank control group, the difference was significant (P0.05), while the latter was only 9.37%, 13.93% and 19.00%.
【學(xué)位授予單位】:大連海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X55;X17
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 趙云英,楊慶霄;溢油在海洋環(huán)境中的風(fēng)化過程[J];海洋環(huán)境科學(xué);1997年01期
2 李永霞;鄭西來;馬艷飛;;石油污染物在土壤中的環(huán)境行為研究進(jìn)展[J];安全與環(huán)境工程;2011年04期
3 王慶仁,劉秀梅,崔巖山,董藝婷;土壤與水體有機(jī)污染的生物修復(fù)及其應(yīng)用研究進(jìn)展[J];生態(tài)學(xué)報(bào);2001年01期
4 藺昕;李培軍;臺(tái)培東;鞏宗強(qiáng);張海榮;;石油污染土壤植物-微生物修復(fù)研究進(jìn)展[J];生態(tài)學(xué)雜志;2006年01期
5 李英,趙德智,袁秋菊;超聲波在石油化工中的應(yīng)用及研究進(jìn)展[J];石油化工;2005年02期
6 鄭天凌,莊鐵城,蔡立哲,田蘊(yùn),郭楚玲,徐美珠,李少菁;微生物在海洋污染環(huán)境中的生物修復(fù)作用[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年02期
7 王紹玲,熊運(yùn)實(shí),,向蘭,鄭遠(yuǎn)揚(yáng);石油及其它有機(jī)污染的生物治理法[J];油氣田環(huán)境保護(hù);1994年04期
相關(guān)碩士學(xué)位論文 前1條
1 盧麗麗;石油污染土壤的植物修復(fù)研究[D];西安建筑科技大學(xué);2008年
本文編號(hào):2070628
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2070628.html