臺風(fēng)對西北太平洋氣旋渦的影響
本文選題:臺風(fēng) + 海洋氣旋渦; 參考:《中國科學(xué)技術(shù)大學(xué)》2015年碩士論文
【摘要】:臺風(fēng)對海洋的影響是“臺風(fēng)-海洋”相互作用的重要分支,海洋(氣旋和反氣旋)中尺度渦在海洋中普遍存在,且對混合、物質(zhì)的輸運、能量的傳播等諸多海洋過程有重要貢獻;所以研究臺風(fēng)對中尺度渦的影響有重要意義。本文利用衛(wèi)星遙感的海表溫度、海表高度、海表鹽度資料和浮標(biāo)直接測量的海水溫度、鹽度廓線,結(jié)合建立的臺風(fēng)風(fēng)場模型,就海洋氣旋性中尺度渦對臺風(fēng)的響應(yīng)開展了-些分析研究。 首先選取了2012年三級臺風(fēng)“派比安”,分析了其對海洋的影響。該臺風(fēng)經(jīng)過研究區(qū)域(126。E-133。E,17。N-25.5。N)后,海表溫度下降和海表鹽度上升,在混合層上述兩個要素也是同樣的變化。最低點的海表高度從-20cm下降為-53cm,如此顯著地變化一方面與臺風(fēng)的影響有關(guān),另一方面與中尺度氣旋渦的合并密切相關(guān)。在臺風(fēng)中心,海表鹽度的下降是海水蒸發(fā)、表層海水湍流混合和下層海水涌升與降水稀釋作用競爭的結(jié)果。另外用一個臺風(fēng)風(fēng)場模型計算了Ekman抽吸導(dǎo)致的水體上升距離,并由氣旋渦中典型上升流速度估算了渦中上升流抬升的距離,這兩者的數(shù)值和與浮標(biāo)廓線反映出的水體上升距離相吻合。從而解釋了溫躍層以下水體中同一深度處溫度和鹽度的變化是水體上升造成的。 然后對2001-2008年15個超強臺風(fēng)經(jīng)過20個氣旋渦區(qū)域時對這些渦造成的影響進行了統(tǒng)計分析。目的是找出影響海洋氣旋渦變化的關(guān)鍵因子。在這20個渦區(qū)域中,僅有兩處在臺風(fēng)過后出現(xiàn)新海洋氣旋渦,這表明大多數(shù)情況下,臺風(fēng)不能誘發(fā)產(chǎn)生新的海洋氣旋渦。通過對3個臺風(fēng)參數(shù)與描述渦變化的6個變量做線性回歸分析,發(fā)現(xiàn)強迫時間與這6個參數(shù)的相關(guān)性最好,這是由于該量結(jié)合了臺風(fēng)強度、臺風(fēng)尺度和移動速度等多個因素,可以把強迫時間作為反映渦變化的指示因子。另一方面,統(tǒng)計時滿足條件的例子較少,表明臺風(fēng)對海洋中尺度氣旋渦的影響是否顯著可能需進一步研究。 最后利用建立的臺風(fēng)風(fēng)場模型和海表高度、海表流速數(shù)據(jù)分析了臺風(fēng)輸入到海流、海浪、海洋上層、海洋深層及通過海表摩擦耗散的能量。分析臺風(fēng)“派比安”對研究區(qū)域做功的情況,表明臺風(fēng)經(jīng)過時并不是對氣旋渦內(nèi)每一點處海流都做正功,臺風(fēng)對海流做正功還是負(fù)功根本上是由其與渦的相對位置決定的。臺風(fēng)對海流做功功率、對海浪做功功率和臺風(fēng)通過海表摩擦耗散的功率,三者量級分別是1O-1W/M2、100W/M2、101W/m2。通過海表摩擦耗散的功率和能量,與對海浪做功功率和功圖相似,耗散功率和能量較大的地方也在風(fēng)速較大位置,最大功率超過50W/m2,耗散的能量也達(dá)到1OMJ/M2。另外分析2001-2012年平均輸入到深層和表層的能量發(fā)現(xiàn)在臺風(fēng)經(jīng)過頻率較高的地方,輸入的能量較大,可達(dá)40KJ/m2。這些海域臺風(fēng)就是向深層海洋輸入能量的關(guān)鍵區(qū)域。
[Abstract]:The influence of typhoon on the ocean is an important branch of the "Typhoon-ocean" interaction. The mesoscale vortices of the ocean (cyclones and anticyclones) are ubiquitous in the ocean, and they are mixed and transported. Many ocean processes, such as energy propagation, have important contributions, so it is important to study the effects of typhoons on mesoscale vortices. In this paper, sea surface temperature, sea surface height, sea surface salinity data, sea temperature and salinity profile measured directly by buoy are used to establish typhoon wind field model. The response of ocean cyclonic mesoscale vortices to typhoons is studied in this paper. First of all, the influence on the sea was analyzed by selecting three-class typhoon Pipian in 2012. The sea surface temperature decreased and the sea surface salinity increased after the typhoon went through the study area 126.E-133.Ef17.N-25.5.N. the above two elements also changed the same in the mixed layer. The sea surface height of the lowest point decreases from -20 cm to -53 cm, which is related to the influence of typhoon on the one hand, and to the combination of mesoscale vortex on the other hand. In the center of typhoon, the decrease of sea surface salinity is the result of evaporation, turbulent mixing of surface seawater and the competition between water upwelling and precipitation dilution. In addition, a typhoon wind field model is used to calculate the rising distance of water caused by Ekman suction, and the distance of upwelling in the vortex is estimated from the typical upwelling velocity in the vortex. The two values are consistent with the rising distance of the water reflected by the buoy profile. It is explained that the variation of temperature and salinity at the same depth below thermocline is caused by the rise of water body. Then the effects of 15 superstrong typhoons over 20 vortex regions in 2001-2008 on these vortices are analyzed statistically. The aim of this paper is to find out the key factors that influence the variation of ocean vortex. Only two of the 20 vortex regions have new ocean vortex after typhoon, which indicates that typhoon can not induce new ocean vortex in most cases. Through linear regression analysis of three typhoon parameters and six variables describing vorticity variation, it is found that forced time has the best correlation with these six parameters, which is due to the combination of typhoon intensity, typhoon scale and moving velocity. The forced time can be used as an indicator of vorticity change. On the other hand, there are few examples that satisfy the conditions in statistics, which indicates whether the influence of typhoon on the mesoscale vortex of the ocean may need further study. Finally, using the typhoon wind field model and sea surface height and sea surface velocity data, the energy dissipation from typhoon input to current, ocean wave, upper ocean, deep ocean and friction through sea surface is analyzed. By analyzing the work done by typhoon "Pibian" on the study area, it is shown that the typhoon does not do positive work on the current at every point in the vortex when it passes, and whether the typhoon does positive or negative work on the current is fundamentally determined by its relative position with the vortex. The magnitude of typhoon power to current, wave power and friction dissipation through sea surface are 1O-1W / M2100W / M2101W / m2. The power and energy dissipation of sea surface friction is similar to the work power and work diagram of ocean waves. Where the dissipative power and energy are larger, the wind speed is larger, the maximum power is more than 50 W / m ~ 2, and the dissipated energy is 1 OMJ / M ~ (2). In addition, from 2001 to 2012, the energy input to the deep and surface layers was found to be more than 40 KJ / m ~ (2) when the typhoon passed with a high frequency. These sea typhoons are the key areas where energy is pumped into the deep ocean.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P732;P444
【參考文獻】
相關(guān)期刊論文 前10條
1 ;Impacts of Typhoons on the Kuroshio Large Meander:Observation Evidences[J];Atmospheric and Oceanic Science Letters;2009年01期
2 ;An Ocean Reanalysis System for the Joining Area of Asia and Indian-Pacific Ocean[J];Atmospheric and Oceanic Science Letters;2010年02期
3 陳大可;許建平;馬繼瑞;陳顯堯;王桂華;王偉;韓桂軍;張啟龍;袁耀初;周偉東;;全球?qū)崟r海洋觀測網(wǎng)(Argo)與上層海洋結(jié)構(gòu)、變異及預(yù)測研究[J];地球科學(xué)進展;2008年01期
4 趙輝;唐丹玲;王素芬;;南海西北部夏季葉綠素a濃度的分布特征及其對海洋環(huán)境的響應(yīng)[J];熱帶海洋學(xué)報;2005年06期
5 劉增宏;許建平;朱伯康;孫朝輝;張立峰;;利用Argo資料研究2001—2004年期間西北太平洋海洋上層對熱帶氣旋的響應(yīng)[J];熱帶海洋學(xué)報;2006年01期
6 陳光華;黃榮輝;;西北太平洋暖池?zé)釥顟B(tài)對熱帶氣旋活動的影響[J];熱帶氣象學(xué)報;2006年06期
7 許東峰,劉增宏,徐曉華,許建平;西北太平洋暖池區(qū)臺風(fēng)對海表鹽度的影響[J];海洋學(xué)報(中文版);2005年06期
8 KAWAMURA Hiroshi;Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea: a case study[J];Acta Oceanologica Sinica;2004年02期
9 尚曉東;徐馳;陳桂英;練樹民;;海洋中尺度渦的機械能及其源匯研究[J];熱帶海洋學(xué)報;2013年02期
10 LIU Zenghong;XU Jianping;SUN Chaohui;WU Xiaofen;;An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats[J];Acta Oceanologica Sinica;2014年11期
相關(guān)博士學(xué)位論文 前2條
1 劉玲玲;熱帶氣旋在海洋能量平衡和水團平衡中的作用[D];中國海洋大學(xué);2008年
2 管守德;南海北部近慣性振蕩研究[D];中國海洋大學(xué);2014年
,本文編號:1885596
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1885596.html