大型復雜結(jié)構(gòu)低頻線譜振動優(yōu)化設計研究
本文選題:海洋平臺 + 低頻線譜振動; 參考:《哈爾濱工程大學》2016年碩士論文
【摘要】:21世紀以來,世界各國在船舶與海洋結(jié)構(gòu)物及其配套設備方面的建造日趨大型化、復雜化、多樣化,由此帶來的結(jié)構(gòu)振動問題日趨嚴重;與此同時,國際標準化組織ISO 6954:1984、2000(E)《機械振動和沖擊—商船振動的綜合評價標準》對海洋平臺及船舶振動提出了更高的要求;因此,如何有效降低大型復雜結(jié)構(gòu)的振動響應,特別是由船載設備引起的共振響應,已經(jīng)成為工程領(lǐng)域中亟待解決的問題。為此,本文首先對船舶與海洋結(jié)構(gòu)物振動控制方法概況進行了闡述,對幾種振動控制方法存在的不足及難點進行了分析。分析結(jié)果表明,主動控制技術(shù)因需要外界能源的輸入,且由于開發(fā)研究時間較短存在技術(shù)復雜、造價較高、可靠性較低等缺點,尚未在工程中廣泛應用;被動控制技術(shù)具有結(jié)構(gòu)簡單、經(jīng)濟性好、易于操作且不需要外部能源的供給等優(yōu)點,有較好的工程應用前景。針對上述問題,本文擬以吸振原理為基礎,將動力吸振器應用到大型復雜結(jié)構(gòu)低頻線譜振動控制中,形成應用于大型復雜結(jié)構(gòu)低頻線譜振動控制的動力吸振系統(tǒng)化方法。首先,本文闡述了動力吸振原理,建立了動力吸振數(shù)學模型,得到了振動系統(tǒng)主結(jié)構(gòu)的穩(wěn)態(tài)響應幅值函數(shù);在此基礎上,討論了動力吸振器與主結(jié)構(gòu)最優(yōu)質(zhì)量比、最優(yōu)阻尼比、最優(yōu)頻率比的取值范圍,以及動力吸振器的最優(yōu)布置數(shù)量和最優(yōu)布置位置等。結(jié)果表明,動力吸振器其它參數(shù)在一定條件下,質(zhì)量比越大,振動系統(tǒng)主結(jié)構(gòu)的穩(wěn)態(tài)響應幅值越小;阻尼比越大,振動系統(tǒng)主結(jié)構(gòu)的穩(wěn)態(tài)響應幅值越小;頻率比越接近1,振動系統(tǒng)主結(jié)構(gòu)的穩(wěn)態(tài)響應幅值越小;總質(zhì)量相等的前提下,動力吸振器布置數(shù)量越多,振動系統(tǒng)主結(jié)構(gòu)的穩(wěn)態(tài)響應幅值越小。在上述研究的基礎上,總結(jié)形成了應用于大型復雜結(jié)構(gòu)低頻線譜振動控制的動力吸振系統(tǒng)化方法流程,并以船舶與海洋結(jié)構(gòu)物典型連接構(gòu)件為例,開展了動力吸振系統(tǒng)化方法的有效性驗證。結(jié)果表明:動力吸振系統(tǒng)化方法能較好地應用于船舶與海洋結(jié)構(gòu)物典型連接構(gòu)件,典型考核位置的振動響應隨動力吸振器各參數(shù)的變化與理論推導保持一致,初步驗證了動力吸振系統(tǒng)化方法的有效性,為大型復雜結(jié)構(gòu)低頻線譜振動定量預報及相關(guān)研究提供了方法依據(jù)。最后,將動力吸振系統(tǒng)化方法應用于某海洋平臺上層建筑的振動響應控制中,分析了海洋平臺上層建筑典型艙室的振動特性,針對該海洋平臺實際工程問題,提出了三種動力吸振器布置方案,并通過改變動力吸振器參數(shù)對減振效果不佳的布置方案進行了優(yōu)化設計,為海洋平臺等大型復雜結(jié)構(gòu)實船振動控制提供了參考。
[Abstract]:Since the 21st century, the construction of ships and marine structures and their supporting equipment has become more and more large, complicated and diversified, and the structural vibration problem has become more and more serious. The International Organization for Standardization (ISO 6954: 1984 / 2000E) "Comprehensive Evaluation Standard for Mechanical Vibration and shock-Merchant ship Vibration" puts forward higher requirements for the vibration of offshore platforms and ships, therefore, how to effectively reduce the vibration response of large and complex structures, Especially the resonance response caused by ship-borne equipment has become an urgent problem in engineering field. In this paper, firstly, the general situation of vibration control methods for ships and marine structures is described, and the shortcomings and difficulties of several vibration control methods are analyzed. The analysis results show that the active control technology has not been widely used in engineering because of the need of external energy input, and because of the shortcomings of complex technology, high cost and low reliability in the short time of development and research. Passive control technology has the advantages of simple structure, good economy, easy operation and no need of external energy supply, so it has a good prospect of engineering application. In view of the above problems, based on the principle of vibration absorption, the dynamic vibration absorber is applied to the control of low frequency linear spectrum vibration of large complex structures, and a systematic method of dynamic vibration absorption is formed for the control of low frequency linear spectrum vibration of large complex structures. Firstly, this paper describes the principle of dynamic vibration absorption, establishes the mathematical model of dynamic vibration absorption, and obtains the steady-state response amplitude function of the main structure of vibration system, and on this basis, discusses the best quantity ratio of dynamic vibration absorber and main structure, the optimal damping ratio. The range of the optimal frequency ratio, the optimal arrangement number and location of the dynamic vibration absorber, etc. The results show that under certain conditions, the larger the mass ratio, the smaller the steady-state response amplitude of the main structure of the vibration system, and the smaller the amplitude of the steady-state response of the main structure of the vibration system is the larger the damping ratio is. The closer the frequency ratio is to 1, the smaller the steady-state response amplitude of the main structure of vibration system is, and the smaller the steady state response amplitude of the main structure of vibration system is when the total mass is equal, the more the number of dynamic vibration absorbers is, the smaller the steady-state response amplitude of the main structure of vibration system is. On the basis of the above research, a systematic method of dynamic vibration absorption applied to the control of low frequency linear spectrum vibration of large and complex structures is summarized, and a typical connection member between ship and ocean structure is taken as an example. The effectiveness of the dynamic vibration absorption systematization method is verified. The results show that the dynamic vibration absorption systematization method can be applied to the typical connection members of ship and ocean structures, and the vibration response of the typical check position is consistent with the theoretical derivation with the variation of the parameters of the dynamic vibration absorber. The effectiveness of the systematization method of dynamic vibration absorption is preliminarily verified, which provides a basis for quantitative prediction of low frequency linear spectrum vibration of large complex structures and related research. Finally, the dynamic vibration absorption systematization method is applied to the vibration response control of an offshore platform superstructure, and the vibration characteristics of the typical cabin of the offshore platform superstructure are analyzed, and the actual engineering problems of the offshore platform are analyzed. Three kinds of layout schemes of dynamic vibration absorbers are put forward, and the optimal design of the layout scheme with poor damping effect is carried out by changing the parameters of the dynamic vibration absorbers, which provides a reference for the vibration control of large and complex ships with complex structures such as offshore platforms.
【學位授予單位】:哈爾濱工程大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:U661.44;P75
【參考文獻】
相關(guān)期刊論文 前10條
1 黃秀金;何立東;黃文超;;半主動TMD控制雙跨軸系過臨界振動的研究[J];機電工程;2014年10期
2 馬強;狄杰建;趙全亮;劉峰斌;;一種自調(diào)頻動力吸振器及其吸振特性研究[J];應用力學學報;2014年04期
3 殷永康;陳光冶;;半主動動力吸振器的變剛度技術(shù)[J];機械科學與技術(shù);2014年07期
4 何琳;徐偉;;艦船隔振裝置技術(shù)及其進展[J];聲學學報;2013年02期
5 陳自力;馬傲玲;游曉良;陳昌萍;;主動式動力吸振器的振動控制研究[J];廈門理工學院學報;2012年03期
6 吳嘉蒙;夏利娟;金咸定;遲少艷;;ISO 6954振動評價標準新舊版本的比較研究[J];振動與沖擊;2012年10期
7 姚耀中;林立;;潛艇機械噪聲控制技術(shù)綜述[J];艦船科學技術(shù);2007年01期
8 張磊,付永領(lǐng),劉永光,何琳;主動隔振技術(shù)及其應用與發(fā)展[J];機床與液壓;2005年02期
9 周亞軍,趙德有;海洋平臺結(jié)構(gòu)振動控制綜述[J];振動與沖擊;2004年04期
10 何鵬,管友海,鐘濤;MR阻尼器在海洋平臺半主動振動控制中的應用[J];青島建筑工程學院學報;2002年03期
相關(guān)博士學位論文 前1條
1 嵇春艷;海洋平臺動力響應分析與振動控制技術(shù)研究[D];中國海洋大學;2003年
相關(guān)碩士學位論文 前3條
1 王子敬;動力吸振器設計及薄板結(jié)構(gòu)低頻隔聲技術(shù)研究[D];北京交通大學;2015年
2 王琳;動力吸振器的參數(shù)設計和動力學分析[D];石家莊鐵道大學;2012年
3 李化鳳;海洋平臺結(jié)構(gòu)振動控制方法研究[D];大連理工大學;2007年
,本文編號:1867716
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1867716.html