海流能發(fā)電渦激振動(dòng)驅(qū)動(dòng)的水動(dòng)力特性及能量獲取研究
本文選題:海流 + 渦激振動(dòng)。 參考:《昆明理工大學(xué)》2016年博士論文
【摘要】:在不可再生能源日益枯竭、且對(duì)環(huán)境危害壓力越來越大,但能源需求卻不斷增長的今天,尋找、開發(fā)新型清潔能源替代化石能源的需求越來越受到重視。海洋潮流能作為一種綠色可再生能源,具有可持續(xù)性、高能源密度、豐富蘊(yùn)藏量等特點(diǎn),使其成為有廣闊發(fā)展前景的開發(fā)領(lǐng)域。流速較低的海流能為潮流能的一種,其能量密度與流速的立方成正比,若采用傳統(tǒng)的水下渦輪機(jī)驅(qū)動(dòng)系統(tǒng),由于水力渦輪在海流環(huán)境下很難像風(fēng)力機(jī)那樣較為靈活地實(shí)現(xiàn)有效能量轉(zhuǎn)換,基于流體力學(xué)圓柱繞流渦激振動(dòng)的驅(qū)動(dòng)模式成為一種選擇。渦激振動(dòng)利用均勻流下圓柱渦脫落力誘發(fā)其共振的機(jī)理捕獲海流能,以此形成水力驅(qū)動(dòng)系統(tǒng)進(jìn)行發(fā)電,是一種適于低速海流環(huán)境的水力驅(qū)動(dòng)發(fā)電方式。本文重點(diǎn)研究了海流環(huán)境下誘發(fā)渦激振動(dòng)的參數(shù)范圍及系統(tǒng)最大獲能的海流環(huán)境,并通過流固耦合數(shù)值方法對(duì)渦激振動(dòng)進(jìn)行了數(shù)值研究,對(duì)影響渦激振動(dòng)獲取能量的最佳參數(shù)進(jìn)行了分析,設(shè)計(jì)了具有不同橫向和流向間距比、不同布置方式的多圓柱振動(dòng)系統(tǒng)作為能量轉(zhuǎn)換裝置,詳細(xì)分析研究了系統(tǒng)渦激振動(dòng)響應(yīng)、水動(dòng)力特性、尾渦模式以及能量獲取效率和能量密度大小與系統(tǒng)參數(shù)的關(guān)系。主要研究?jī)?nèi)容和創(chuàng)新成果如下:(1)采用了一種能較好模擬渦激大幅振動(dòng)的流固雙向耦合數(shù)值方法。計(jì)算模型流體區(qū)域使用基于任意拉格朗日-歐拉(ALE)動(dòng)網(wǎng)格機(jī)制的不可壓縮雷諾時(shí)均RANS方程描述,并用SSTk-ω湍流模型進(jìn)行封閉,采用基于ADNA系統(tǒng)開發(fā)的FCBI-C單元模式離散計(jì)算區(qū)域,配合相應(yīng)的算法,實(shí)現(xiàn)了渦激振動(dòng)圓柱體大幅振動(dòng)情況下尾流渦街形成的高效數(shù)值模擬,得到了不同約化速度下系統(tǒng)的響應(yīng)分支、振幅、頻率、相位角、流場(chǎng)信息以及各響應(yīng)分支中的尾渦脫落特征。通過文獻(xiàn)對(duì)比研究,證明本文提出的分析理論和數(shù)值方法是高效可靠的,可很好地用于模擬單圓柱或多圓柱系統(tǒng)的渦激振動(dòng)。(2)提出了基于渦激振動(dòng)獲取海流能發(fā)電的4種參數(shù)方案,分別研究了各方案質(zhì)量比m*、阻尼比ζ質(zhì)量阻尼比m*ζ和水中固有頻率fm,w對(duì)單圓柱渦激振動(dòng)響應(yīng)及能量轉(zhuǎn)換效率η的影響,給出不同方案下各參數(shù)在基于海流水動(dòng)能獲取應(yīng)用中的最佳適應(yīng)范圍。研究發(fā)現(xiàn),質(zhì)量比m*和阻尼比ζ除了影響能量轉(zhuǎn)換效率η,還影響有效獲取能量的約化速度范圍,不同系統(tǒng)均存在最優(yōu)的質(zhì)量阻尼比m*ζ值,使最大能量轉(zhuǎn)換效率ηmax值和平均能量轉(zhuǎn)換效率ηp值最大。研究還發(fā)現(xiàn),適當(dāng)設(shè)計(jì)系統(tǒng)的fn,w值,不僅可使圓柱從水流中獲取能量效率最大,同時(shí)還可使圓柱結(jié)構(gòu)在較廣的流速和約化速度范圍內(nèi)都能獲取較高的水動(dòng)能。(3)研究了間距比對(duì)矩形布置的四圓柱振動(dòng)系統(tǒng)的水動(dòng)力特性及其對(duì)獲取海流能效率的影響,并且從規(guī);_發(fā)利用海流能的角度考慮,能量轉(zhuǎn)換器應(yīng)優(yōu)先考慮由多個(gè)圓柱組成的系統(tǒng)。本文提出了一種結(jié)合并列和串列構(gòu)形的矩形布置四圓柱振動(dòng)系統(tǒng),并首次提出機(jī)械耦合的概念描述這種系統(tǒng)的動(dòng)態(tài)特性,即將由四個(gè)圓柱組成的振動(dòng)系統(tǒng)整體視為一個(gè)質(zhì)量-彈簧-阻尼系統(tǒng),任何響應(yīng)時(shí)刻,維持振動(dòng)系統(tǒng)中的四圓柱相對(duì)位置始終保持不變,以便系統(tǒng)獲得最佳的水動(dòng)力特性。由于機(jī)械耦合的四圓柱振動(dòng)系統(tǒng)為矩形布置,橫向和流向間距比不同,提出組合間距比LH/D2這一概念。通過四柱機(jī)械耦合系統(tǒng)在不同橫向和流向間距比方案下的自由渦激振動(dòng)的模擬計(jì)算,研究了組合間距比LH/D2對(duì)四圓柱振動(dòng)系統(tǒng)的振幅頻率響應(yīng)、升力特性、壓力特性、尾渦結(jié)構(gòu)以及獲取能量的影響。結(jié)果發(fā)現(xiàn),合理選擇橫向和流向間距比可使四柱機(jī)械耦合系統(tǒng)從海流中獲取的能量和能量密度最大化。(4)研究了交錯(cuò)布置五圓柱振動(dòng)系統(tǒng)的水動(dòng)力特性及能量獲取效率,分析了采用交錯(cuò)布置的多圓柱結(jié)構(gòu)規(guī);煤A魉畡(dòng)能的可行性。在四圓柱機(jī)械耦合系統(tǒng)的基礎(chǔ)上,結(jié)合串列、并列和交錯(cuò)三種布置方式,提出了另一種由五個(gè)圓柱組成的交錯(cuò)布置振動(dòng)系統(tǒng)。得到不同橫向和流向間距比下該系統(tǒng)的響應(yīng)、水動(dòng)力特性、尾渦結(jié)構(gòu)及獲取的水動(dòng)能結(jié)果。結(jié)果表明:與矩形布置的四圓柱振動(dòng)系統(tǒng)一樣,存在最優(yōu)的組合間距比可使五圓柱振動(dòng)系統(tǒng)從海流中獲取能量最大,并擁有最大能量獲取密度。對(duì)比兩種布置形式的振動(dòng)系統(tǒng)在其最優(yōu)組合間距比時(shí)的能量獲取密度值表明:采用交錯(cuò)布置方式明顯優(yōu)于矩形布置方式。此外,隨著組合間距比的增加,尾渦內(nèi)逐漸出現(xiàn)兩行渦街,內(nèi)側(cè)渦街隨橫向間距比的增加逐漸出現(xiàn)“2S”模式、“S+C”模式和“2C”模式。通過對(duì)五圓柱振動(dòng)結(jié)構(gòu)和單圓柱結(jié)構(gòu)的升力譜峰值和能量獲取值分析可知,使用本文提出的多圓柱振動(dòng)組合系統(tǒng)作為能量轉(zhuǎn)換器,配合適當(dāng)?shù)尿?qū)動(dòng)傳輸裝置,對(duì)實(shí)現(xiàn)規(guī);煤A髂苁怯行Э尚行缘。
[Abstract]:The demand for new clean energy instead of fossil energy is becoming more and more important in the days when non renewable energy is increasingly exhausted and environmental hazards are increasing, but the demand for new clean energy instead of fossil energy is becoming more and more important. It makes it a development field with broad prospects. The low flow current can be one of the power flow energy. The energy density is proportional to the cube of the flow velocity. If the traditional underwater turbine drive system is adopted, the hydraulic turbine is difficult to achieve effective energy conversion like a wind turbine in the current environment, based on the fluid. The driving mode of the vortex excited vibration of the flow around a cylinder becomes a choice. The vortex induced vibration uses the mechanism of the cylindrical vortex deactivation induced by the uniform flow to induce its resonance to capture the current energy, which forms a hydraulic driving system to generate electricity. It is a hydraulic driven power generation mode suitable for low speed sea current environment. This paper focuses on the study of the induced sea current environment. The parameters range of vortex excited vibration and the maximum energy of the system can be obtained, and the numerical study of vortex induced vibration is carried out by the fluid solid coupling numerical method. The optimum parameters of the vortex excited vibration to obtain the energy are analyzed. The multi cylindrical vibration system with different transverse and flow direction spacing and different layout is designed as the energy. The relationship between the vortex induced vibration response, hydrodynamic characteristics, tail vortex pattern, energy acquisition efficiency and energy density with the system parameters is analyzed in detail. The main research contents and innovation results are as follows: (1) a two way coupling numerical method which can better simulate the large vortex excited vibration is adopted. In the body region, the incompressible Reynolds time averaged RANS equation based on arbitrary Lagrange Euler (ALE) dynamic grid mechanism is described and closed by the SSTk- Omega turbulence model. The FCBI-C element model based on the ADNA system is used to calculate the discrete region of the FCBI-C element model, and the wake vortices under the large vibration of the vortex excited cylinder are realized with the corresponding algorithm. The high efficient numerical simulation of street formation has obtained the response branch, amplitude, frequency, phase angle, flow field information and the tail vortex shedding characteristics in various response branches at different reduction rates. Through literature comparison, it is proved that the analysis theory and numerical method proposed in this paper are efficient and reliable, and can be well used to simulate single cylinder or multi circle. The vortex induced vibration of the column system. (2) 4 parameters of the current energy generation based on the vortex excited vibration are proposed. The effects of the mass ratio m*, the damping ratio zeta mass damping ratio m* zeta and the water natural frequency FM, and the w on the vortex induced vibration response and energy conversion efficiency of the single cylinder are studied respectively. It is found that the mass ratio m* and the damping ratio zeta affect the energy conversion efficiency in addition to the energy conversion efficiency. It also affects the reduced speed range of effective energy acquisition, and the optimal mass damping ratio m* zeta value exists in different systems, which makes the maximum energy conversion efficiency ETA max value and the mean energy conversion efficiency maximum. It is also found that properly designing the FN and w values of the system can not only make the cylinder get the maximum energy efficiency from the flow, but also make the cylindrical structure obtain higher water kinetic energy in the wider flow velocity and reduction speed range. (3) the hydrodynamic characteristics of the four cylindrical vibration system with a rectangular spacing ratio and its energy efficiency for obtaining the ocean current are studied. In terms of the impact of the rate, and from the perspective of the scale development and utilization of the current energy, the energy converter should give priority to a system composed of multiple cylinders. This paper presents a rectangular arrangement of four cylindrical vibration systems combined with parallel and tandem configuration, and for the first time presents the dynamic characteristics of this system, which is about four. The vibration system composed of a cylinder is considered as a mass spring damping system. At any response time, the relative position of the four cylinders in the vibration system remains unchanged so that the system can obtain the best hydrodynamic characteristics. As the four cylindrical vibration system of the mechanical coupling is rectangular, the transverse and flow distance is different, the combination of the transverse and flow direction is different. Through the simulation of free vortex excited vibration of a four column mechanical coupling system under the scheme of different transverse and direction spacing ratio, the effect of the combination spacing on the amplitude frequency response, the lift characteristics, the pressure characteristics, the tail vortex structure and the energy acquisition of the four cylinder vibration system is investigated. The results are found to be reasonable. The lateral and direction spacing can maximize the energy and energy density obtained by the four column mechanical coupling system from the current. (4) the hydrodynamic characteristics and energy acquisition efficiency of the staggered five cylindrical vibration system are studied. The feasibility of using the multi cylindrical structure to scale the kinetic energy of the sea water is analyzed in the four cylinder machine. On the basis of the mechanical coupling system, an alternate arrangement vibration system composed of five cylinders is put forward in combination with tandem, parallel and interlaced three arrangements. The response, hydrodynamic characteristics, tail vortex structure and the obtained water kinetic energy results are obtained at the ratio of different transverse and direction spacing to the system. The results show that the four cylinders are arranged with the rectangular arrangement. As for the vibration system, the optimal combination spacing can make the five cylinder vibration system obtain the maximum energy from the ocean current and have the maximum energy acquisition density. The comparison of the energy acquisition density value of the vibration systems of the two arrangement forms at the optimal combination spacing shows that the interlaced arrangement is obviously superior to the rectangular arrangement. In addition, with the increase of the spacing ratio, two rows of vortex streets gradually appear in the tail vortex. The inner vortex street gradually appears "2S" mode, "S+C" mode and "2C" mode with the increase of the transverse spacing ratio. By analyzing the peak value of the lift spectrum and the energy acquisition value of the single cylinder structure and the single cylinder structure, it is known that the multi cylinder proposed in this paper is used. As an energy converter, vibration combination system is effective and feasible for large-scale utilization of ocean current energy.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P743
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 方平治;顧明;;圓柱兩自由度渦激振動(dòng)的數(shù)值模擬研究[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
2 方平治;顧明;談建國;;典型2維柱體渦激振動(dòng)的數(shù)值模擬研究[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年07期
3 王海青;郭海燕;劉曉春;張永波;孟凡順;;海洋立管渦激振動(dòng)抑振方法試驗(yàn)研究[J];中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S1期
4 劉志文;劉小兵;陳政清;栗小祜;;均勻流場(chǎng)串列雙Π型斷面渦激振動(dòng)氣動(dòng)干擾試驗(yàn)研究[J];工程力學(xué);2011年12期
5 張紅;風(fēng)渦激振動(dòng)力作用下,平臺(tái)上部塔架結(jié)構(gòu)的設(shè)計(jì)和計(jì)算[J];中國海洋平臺(tái);1997年02期
6 黃維平;曹靜;張恩勇;唐世振;;大柔性圓柱體兩自由度渦激振動(dòng)試驗(yàn)研究[J];力學(xué)學(xué)報(bào);2011年02期
7 任鐵;付世曉;李潤培;楊建民;;基于模型試驗(yàn)的實(shí)尺度立管渦激振動(dòng)響應(yīng)預(yù)報(bào)方法研究[J];船舶力學(xué);2011年04期
8 房建黨;;渦激振動(dòng)研究方法的探討[J];科技信息;2013年09期
9 羅竹梅;張立翔;;影響從渦激振動(dòng)中獲取能量的參數(shù)研究[J];振動(dòng)與沖擊;2014年09期
10 李立,廖錦翔;渦激振動(dòng)問題的有限元計(jì)算研究[J];工程力學(xué);2003年05期
相關(guān)會(huì)議論文 前10條
1 陳偉民;時(shí)忠民;;海洋平臺(tái)的渦激振動(dòng)研究及其分析方法[A];2003年度海洋工程學(xué)術(shù)會(huì)議論文集[C];2003年
2 王琳;;內(nèi)流速度對(duì)管道渦激振動(dòng)響應(yīng)的影響研究[A];第六屆全國動(dòng)力學(xué)與控制青年學(xué)者學(xué)術(shù)研討會(huì)論文摘要集[C];2012年
3 劉志文;楊陽;陳政清;張著名;辛亞兵;;橋梁結(jié)構(gòu)抗風(fēng)設(shè)計(jì)中的渦激振動(dòng)問題[A];第十八屆全國橋梁學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
4 代胡亮;王琳;;超臨界內(nèi)流速條件下管道的渦激振動(dòng)響應(yīng)[A];第九屆全國動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
5 黃熙龍;王嘉松;;利用離散渦方法模擬圓柱繞流及渦激振動(dòng)[A];第二十五屆全國水動(dòng)力學(xué)研討會(huì)暨第十二屆全國水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(上冊(cè))[C];2013年
6 王琳;;非線性渦激振動(dòng)及其能量利用的幾個(gè)問題討論[A];第七屆全國動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2013年
7 鮮榮;廖海黎;朱超;盛建軍;;大跨度橋梁渦激振動(dòng)經(jīng)驗(yàn)線性模型應(yīng)用[A];第十四屆全國結(jié)構(gòu)風(fēng)工程學(xué)術(shù)會(huì)議論文集(中冊(cè))[C];2009年
8 王藝;陳偉民;;均勻來流中圓柱渦激振動(dòng)負(fù)附加質(zhì)量[A];第十二屆中國海岸工程學(xué)術(shù)討論會(huì)論文集[C];2005年
9 林黎明;宋芳;曾曉輝;;應(yīng)用新的尾流振子模型研究大長徑比下立管的渦激振動(dòng)[A];北京力學(xué)會(huì)第十六屆學(xué)術(shù)年會(huì)論文集[C];2010年
10 廖海黎;王騎;李明水;;嘉紹大橋分體式鋼箱梁渦激振動(dòng)特性風(fēng)洞試驗(yàn)研究[A];第十四屆全國結(jié)構(gòu)風(fēng)工程學(xué)術(shù)會(huì)議論文集(中冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 涂佳黃;剪切來流下鈍體繞流與渦激振動(dòng)效應(yīng)模擬與分析[D];上海交通大學(xué);2014年
2 孫延國;基于偏相關(guān)的大跨度橋梁渦激振動(dòng)分析方法及應(yīng)用研究[D];西南交通大學(xué);2013年
3 李保軍;海洋管線渦激振動(dòng)監(jiān)測(cè)關(guān)鍵技術(shù)研究[D];西北工業(yè)大學(xué);2015年
4 秦浩;大跨度變截面連續(xù)鋼箱梁橋渦激振動(dòng)計(jì)算方法研究[D];西南交通大學(xué);2015年
5 毛海英;鋼懸鏈線立管整體動(dòng)力響應(yīng)分析[D];中國海洋大學(xué);2015年
6 羅竹梅;海流能發(fā)電渦激振動(dòng)驅(qū)動(dòng)的水動(dòng)力特性及能量獲取研究[D];昆明理工大學(xué);2016年
7 詹昊;鋼桁拱橋吊桿渦激振動(dòng)仿真分析[D];華中科技大學(xué);2009年
8 陳正壽;柔性管渦激振動(dòng)的模型實(shí)驗(yàn)及數(shù)值模擬研究[D];中國海洋大學(xué);2009年
9 何長江;柔性立管渦激振動(dòng)試驗(yàn)與數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2010年
10 黃智勇;柔性立管渦激振動(dòng)時(shí)域響應(yīng)分析[D];上海交通大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 韓艷艷;鋼箱梁斜拉橋渦激振動(dòng)控制的TMD參數(shù)研究[D];西南交通大學(xué);2015年
2 武爽;潮流能轉(zhuǎn)換裝置阻尼條件下圓柱振子渦激振動(dòng)現(xiàn)象研究[D];中國海洋大學(xué);2015年
3 鐘詩民;群式站立式立管浮筒渦激振動(dòng)研究[D];中國海洋大學(xué);2015年
4 郭峰;汽車外后視鏡風(fēng)激振特性的數(shù)值模擬研究[D];吉林大學(xué);2016年
5 朱文波;海洋熱塑性增強(qiáng)管渦激振動(dòng)流固耦合分析[D];南京理工大學(xué);2016年
6 張帥;懸索橋吊索剛度、阻尼及渦激振動(dòng)分析方法研究[D];鄭州大學(xué);2016年
7 鄧杰;扭轉(zhuǎn)及彎曲壓電梁渦激振動(dòng)俘能研究[D];哈爾濱工業(yè)大學(xué);2016年
8 王響軍;斜拉索渦激振動(dòng)被動(dòng)吹氣控制的數(shù)值模擬與試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2016年
9 楊文瀚;基于粘彈性阻尼器的斜拉橋拉索渦激振動(dòng)控制研究[D];哈爾濱工業(yè)大學(xué);2016年
10 龔慧星;大跨度橋梁主梁渦激振動(dòng)展向效應(yīng)試驗(yàn)研究[D];湖南大學(xué);2016年
,本文編號(hào):1867222
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1867222.html