多參數(shù)海洋浮標(biāo)監(jiān)測系統(tǒng)研究
本文選題:海洋浮標(biāo) + 監(jiān)測系統(tǒng); 參考:《上海海洋大學(xué)》2017年碩士論文
【摘要】:隨著科學(xué)發(fā)展和社會進(jìn)步,人們對海洋開發(fā)使用的力度逐步加強(qiáng),尤其是近岸部分海域污染比較嚴(yán)重,對海洋有效監(jiān)測顯得格外重要。海洋浮標(biāo)作為海洋監(jiān)測的主要手段,以其可靠性高、穩(wěn)定性好、相對高效的優(yōu)勢,廣泛應(yīng)用于海洋水文和氣象數(shù)據(jù)的采集當(dāng)中。近海海域主要利用3米小型浮標(biāo)進(jìn)行監(jiān)測。目前在位運(yùn)行的傳統(tǒng)海洋浮標(biāo)普遍存在易偷盜、易腐蝕、產(chǎn)品質(zhì)量不高、需定期換電池等問題,一定程度影響其正常工作。本文借助上?莆萍紕(chuàng)新行動計(jì)劃”基礎(chǔ)研究重點(diǎn)項(xiàng)目,北極海洋觀測浮標(biāo)故障機(jī)理以及服役安全性研究(11JC1404700),以我國近海3米海洋監(jiān)測浮標(biāo)為基礎(chǔ),對其進(jìn)行優(yōu)化設(shè)計(jì),以構(gòu)建一個(gè)近海海洋監(jiān)測浮標(biāo)系統(tǒng),并利用我國獨(dú)立設(shè)計(jì)的北斗衛(wèi)星將數(shù)據(jù)傳輸?shù)桨墩窘邮障到y(tǒng),為我國近海的海洋監(jiān)測事業(yè)做出一定的貢獻(xiàn)。小型多參數(shù)海洋浮標(biāo)監(jiān)測系統(tǒng),主要包含四大部分:海洋浮標(biāo)基礎(chǔ)硬件(浮標(biāo)標(biāo)體,錨泊系統(tǒng),防護(hù)設(shè)備,傳感器,供電系統(tǒng)),數(shù)據(jù)采集系統(tǒng),通信系統(tǒng),岸站接收系統(tǒng)。在硬件系統(tǒng)的標(biāo)體設(shè)計(jì)上,考慮了防腐性能和搭載設(shè)備的合理配置,并利用ANSYS軟件的AQWA對浮標(biāo)常見的三種浮體進(jìn)行水動力分析,通過比較其橫搖響應(yīng)和縱搖響應(yīng)的數(shù)值,選出更適合近海海洋環(huán)境的類半球型浮體;在供電設(shè)備的基礎(chǔ)上,除了傳統(tǒng)的蓄電池和太陽能板發(fā)電以外,利用技術(shù)成熟的可再生綠色能源——風(fēng)能和波浪能組合發(fā)電,為提高波浪能發(fā)電效率,利用Fluent仿真軟件分析設(shè)計(jì)了一款波浪能發(fā)電裝置導(dǎo)流罩,延長了浮標(biāo)工作壽命。在數(shù)據(jù)采集系統(tǒng)的設(shè)計(jì)上,選用低功耗、高精度的CR1000數(shù)據(jù)采集器并針對本文設(shè)計(jì)的浮標(biāo)在對外接口上進(jìn)行設(shè)計(jì)。在數(shù)據(jù)通信系統(tǒng)的設(shè)計(jì)上,選用可靠性高、保密性強(qiáng)的北斗衛(wèi)星實(shí)現(xiàn)采集數(shù)據(jù)的通信和授時(shí)功能,并采用北斗衛(wèi)星和全球定位系統(tǒng)組合定位保障浮標(biāo)的定位精度的準(zhǔn)確性。北斗衛(wèi)星通信終端通過串口與接收系統(tǒng)進(jìn)行連接。在軟件系統(tǒng)的設(shè)計(jì)上,選用操作靈活,可視性好,通用性強(qiáng)的LabVIEW軟件進(jìn)行系統(tǒng)開發(fā),經(jīng)由VISA控件實(shí)現(xiàn)與北斗終端的數(shù)據(jù)通信,實(shí)現(xiàn)對海洋要素的監(jiān)測和浮標(biāo)的狀態(tài)監(jiān)控、數(shù)據(jù)查詢、超限報(bào)警等功能。經(jīng)NI-DAQmx軟件產(chǎn)生數(shù)據(jù)進(jìn)行測試,驗(yàn)證了LabVIEW接收軟件能很好的對多傳感器數(shù)據(jù)進(jìn)行同步顯示、設(shè)置和保存、報(bào)警等功能。本文所設(shè)計(jì)研究的小型多參數(shù)海洋浮標(biāo)監(jiān)測系統(tǒng),提高了其防腐性能、延長其工作時(shí)間,并在標(biāo)體設(shè)計(jì)和各硬件選型設(shè)計(jì)上更加符合近海海域的工作要求,相對于目前現(xiàn)有的小型海洋浮標(biāo)具有更大優(yōu)勢,希望為我國相關(guān)海洋監(jiān)測部門提供一定的參考和幫助。
[Abstract]:With the development of science and the progress of society, the intensity of marine exploitation and use has been strengthened gradually, especially the pollution in the coastal area is serious, so it is very important to monitor the ocean effectively. As the main means of ocean monitoring, ocean buoys are widely used in the collection of marine hydrological and meteorological data due to their advantages of high reliability, good stability and relatively high efficiency. The offshore sea area mainly uses 3 meters small buoy to carry on the monitoring. At present, there are some problems in the traditional marine buoys which are easy to steal, easy to corrode, the quality of products is not high, and the batteries need to be changed regularly, which affects the normal operation of the buoys to a certain extent. In this paper, based on the key basic research project of Shanghai Science and Technology Commission's Action Plan for Scientific and technological Innovation, the failure mechanism and service safety of Arctic ocean observation buoy 11JC1404700, the optimized design of the buoy is carried out on the basis of the 3-meter offshore marine monitoring buoy in China. In order to construct an offshore ocean monitoring buoy system and transmit the data to the shore station receiving system by using the Beidou satellite which is designed independently in our country, this paper makes a certain contribution to the offshore ocean monitoring of our country. The small multi-parameter marine buoy monitoring system mainly includes four parts: the basic hardware of ocean buoy (buoy body, mooring system, protective equipment, sensor, power supply system, data acquisition system, communication system, shore station receiving system). In the design of the hardware system, the anticorrosion performance and the reasonable configuration of the loading equipment are considered, and the hydrodynamic analysis of the three kinds of floating bodies common in the buoy is carried out by using the AQWA of ANSYS software, and the rolling response and the pitching response of the floating body are compared. Select hemispherical floating bodies that are more suitable for offshore marine environments; on the basis of power supply equipment, in addition to traditional batteries and solar panels, use a combination of wind and wave energy, a renewable green energy source with mature technology, to generate electricity. In order to improve the efficiency of wave energy generation, a guide cover of wave energy generating device is designed by using Fluent simulation software, which prolongs the working life of buoy. In the design of the data acquisition system, the CR1000 data collector with low power consumption and high precision is selected, and the buoy designed in this paper is designed on the external interface. In the design of data communication system, Beidou satellite, which has high reliability and high security, is used to realize the communication and timing function of collecting data, and the combination of Beidou satellite and global positioning system is used to ensure the accuracy of buoy positioning. Beidou satellite communication terminal is connected with the receiving system through serial port. In the design of software system, LabVIEW software with flexible operation, good visibility and strong versatility is selected to develop the system. The data communication with Beidou terminal is realized through VISA control, and the monitoring of ocean elements and the state of buoy are realized. Data query, over-limit alarm and other functions. By testing the data generated by NI-DAQmx software, it is verified that the LabVIEW receiving software can display, set and save the multi-sensor data synchronously, alarm and so on. The small multi-parameter marine buoy monitoring system designed in this paper improves its anticorrosion performance, prolongs its working time, and meets the requirements of offshore waters more in the design of standard body and the selection of hardware. Compared with the existing small marine buoys, it has more advantages, and hopes to provide some reference and help for the relevant marine monitoring departments in China.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P715.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙環(huán)宇;孫金偉;范秀濤;郭發(fā)東;張繼明;柴輝;;海洋資料浮標(biāo)波能供電裝置數(shù)值模擬研究[J];山東科學(xué);2016年06期
2 王世明;李晴;;基于北斗衛(wèi)星導(dǎo)航系統(tǒng)的海洋監(jiān)測浮標(biāo)通信系統(tǒng)設(shè)計(jì)與應(yīng)用[J];全球定位系統(tǒng);2016年04期
3 黨超群;張鎖平;齊占輝;李明兵;孫東波;;基于北斗衛(wèi)星系統(tǒng)的深遠(yuǎn)海GPS波浪浮標(biāo)數(shù)據(jù)傳輸研究[J];傳感器與微系統(tǒng);2016年01期
4 周田;張輝;張翔;;北斗衛(wèi)星導(dǎo)航系統(tǒng)在智慧城市建設(shè)中的應(yīng)用[J];全球定位系統(tǒng);2015年01期
5 王波;李民;劉世萱;陳世哲;朱慶林;王紅光;;海洋資料浮標(biāo)觀測技術(shù)應(yīng)用現(xiàn)狀及發(fā)展趨勢[J];儀器儀表學(xué)報(bào);2014年11期
6 楊瑞;顧群;;基于北斗衛(wèi)星的溢油跟蹤浮標(biāo)[J];上海海事大學(xué)學(xué)報(bào);2014年03期
7 戴洪磊;牟乃夏;王春玉;田茂義;;我國海洋浮標(biāo)發(fā)展現(xiàn)狀及趨勢[J];氣象水文海洋儀器;2014年02期
8 洪常委;;北斗衛(wèi)星導(dǎo)航系統(tǒng)在海洋浮標(biāo)中的應(yīng)用[J];聲學(xué)與電子工程;2014年02期
9 尹路;李延斌;馬金鋼;;海洋觀測技術(shù)現(xiàn)狀綜述[J];艦船電子工程;2013年11期
10 馬賀兵;蘇登文;翟輝琴;;“北斗”衛(wèi)星導(dǎo)航定位系統(tǒng)在車輛管理運(yùn)行中的應(yīng)用與探討[J];測繪與空間地理信息;2013年09期
相關(guān)重要報(bào)紙文章 前1條
1 ;2015年中國海洋環(huán)境狀況公報(bào)(選登)[N];中國海洋報(bào);2016年
相關(guān)碩士學(xué)位論文 前7條
1 孫辰;“白龍”浮標(biāo)標(biāo)體設(shè)計(jì)及動力學(xué)分析[D];杭州電子科技大學(xué);2014年
2 姜琳琳;海洋浮標(biāo)波浪能供電裝置設(shè)計(jì)研究[D];上海海洋大學(xué);2013年
3 時(shí)海勇;大型海洋資料浮標(biāo)岸站監(jiān)控與管理系統(tǒng)開發(fā)[D];中國海洋大學(xué);2012年
4 劉丹;小型多參數(shù)海洋環(huán)境監(jiān)測浮標(biāo)系統(tǒng)研究[D];上海海洋大學(xué);2012年
5 李立立;基于海洋臺站和浮標(biāo)的近海海洋觀測系統(tǒng)現(xiàn)狀與發(fā)展研究[D];中國海洋大學(xué);2010年
6 劉斌;帶導(dǎo)流罩的豎軸潮流水輪機(jī)水動力性能研究[D];哈爾濱工程大學(xué);2007年
7 孫汝鵬;基于嵌入式技術(shù)的海洋環(huán)境在線監(jiān)測系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];山東大學(xué);2006年
,本文編號:1820246
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1820246.html