多參數(shù)海洋浮標監(jiān)測系統(tǒng)研究
本文選題:海洋浮標 + 監(jiān)測系統(tǒng); 參考:《上海海洋大學》2017年碩士論文
【摘要】:隨著科學發(fā)展和社會進步,人們對海洋開發(fā)使用的力度逐步加強,尤其是近岸部分海域污染比較嚴重,對海洋有效監(jiān)測顯得格外重要。海洋浮標作為海洋監(jiān)測的主要手段,以其可靠性高、穩(wěn)定性好、相對高效的優(yōu)勢,廣泛應用于海洋水文和氣象數(shù)據(jù)的采集當中。近海海域主要利用3米小型浮標進行監(jiān)測。目前在位運行的傳統(tǒng)海洋浮標普遍存在易偷盜、易腐蝕、產(chǎn)品質(zhì)量不高、需定期換電池等問題,一定程度影響其正常工作。本文借助上?莆萍紕(chuàng)新行動計劃”基礎(chǔ)研究重點項目,北極海洋觀測浮標故障機理以及服役安全性研究(11JC1404700),以我國近海3米海洋監(jiān)測浮標為基礎(chǔ),對其進行優(yōu)化設(shè)計,以構(gòu)建一個近海海洋監(jiān)測浮標系統(tǒng),并利用我國獨立設(shè)計的北斗衛(wèi)星將數(shù)據(jù)傳輸?shù)桨墩窘邮障到y(tǒng),為我國近海的海洋監(jiān)測事業(yè)做出一定的貢獻。小型多參數(shù)海洋浮標監(jiān)測系統(tǒng),主要包含四大部分:海洋浮標基礎(chǔ)硬件(浮標標體,錨泊系統(tǒng),防護設(shè)備,傳感器,供電系統(tǒng)),數(shù)據(jù)采集系統(tǒng),通信系統(tǒng),岸站接收系統(tǒng)。在硬件系統(tǒng)的標體設(shè)計上,考慮了防腐性能和搭載設(shè)備的合理配置,并利用ANSYS軟件的AQWA對浮標常見的三種浮體進行水動力分析,通過比較其橫搖響應和縱搖響應的數(shù)值,選出更適合近海海洋環(huán)境的類半球型浮體;在供電設(shè)備的基礎(chǔ)上,除了傳統(tǒng)的蓄電池和太陽能板發(fā)電以外,利用技術(shù)成熟的可再生綠色能源——風能和波浪能組合發(fā)電,為提高波浪能發(fā)電效率,利用Fluent仿真軟件分析設(shè)計了一款波浪能發(fā)電裝置導流罩,延長了浮標工作壽命。在數(shù)據(jù)采集系統(tǒng)的設(shè)計上,選用低功耗、高精度的CR1000數(shù)據(jù)采集器并針對本文設(shè)計的浮標在對外接口上進行設(shè)計。在數(shù)據(jù)通信系統(tǒng)的設(shè)計上,選用可靠性高、保密性強的北斗衛(wèi)星實現(xiàn)采集數(shù)據(jù)的通信和授時功能,并采用北斗衛(wèi)星和全球定位系統(tǒng)組合定位保障浮標的定位精度的準確性。北斗衛(wèi)星通信終端通過串口與接收系統(tǒng)進行連接。在軟件系統(tǒng)的設(shè)計上,選用操作靈活,可視性好,通用性強的LabVIEW軟件進行系統(tǒng)開發(fā),經(jīng)由VISA控件實現(xiàn)與北斗終端的數(shù)據(jù)通信,實現(xiàn)對海洋要素的監(jiān)測和浮標的狀態(tài)監(jiān)控、數(shù)據(jù)查詢、超限報警等功能。經(jīng)NI-DAQmx軟件產(chǎn)生數(shù)據(jù)進行測試,驗證了LabVIEW接收軟件能很好的對多傳感器數(shù)據(jù)進行同步顯示、設(shè)置和保存、報警等功能。本文所設(shè)計研究的小型多參數(shù)海洋浮標監(jiān)測系統(tǒng),提高了其防腐性能、延長其工作時間,并在標體設(shè)計和各硬件選型設(shè)計上更加符合近海海域的工作要求,相對于目前現(xiàn)有的小型海洋浮標具有更大優(yōu)勢,希望為我國相關(guān)海洋監(jiān)測部門提供一定的參考和幫助。
[Abstract]:With the development of science and the progress of society, the intensity of marine exploitation and use has been strengthened gradually, especially the pollution in the coastal area is serious, so it is very important to monitor the ocean effectively. As the main means of ocean monitoring, ocean buoys are widely used in the collection of marine hydrological and meteorological data due to their advantages of high reliability, good stability and relatively high efficiency. The offshore sea area mainly uses 3 meters small buoy to carry on the monitoring. At present, there are some problems in the traditional marine buoys which are easy to steal, easy to corrode, the quality of products is not high, and the batteries need to be changed regularly, which affects the normal operation of the buoys to a certain extent. In this paper, based on the key basic research project of Shanghai Science and Technology Commission's Action Plan for Scientific and technological Innovation, the failure mechanism and service safety of Arctic ocean observation buoy 11JC1404700, the optimized design of the buoy is carried out on the basis of the 3-meter offshore marine monitoring buoy in China. In order to construct an offshore ocean monitoring buoy system and transmit the data to the shore station receiving system by using the Beidou satellite which is designed independently in our country, this paper makes a certain contribution to the offshore ocean monitoring of our country. The small multi-parameter marine buoy monitoring system mainly includes four parts: the basic hardware of ocean buoy (buoy body, mooring system, protective equipment, sensor, power supply system, data acquisition system, communication system, shore station receiving system). In the design of the hardware system, the anticorrosion performance and the reasonable configuration of the loading equipment are considered, and the hydrodynamic analysis of the three kinds of floating bodies common in the buoy is carried out by using the AQWA of ANSYS software, and the rolling response and the pitching response of the floating body are compared. Select hemispherical floating bodies that are more suitable for offshore marine environments; on the basis of power supply equipment, in addition to traditional batteries and solar panels, use a combination of wind and wave energy, a renewable green energy source with mature technology, to generate electricity. In order to improve the efficiency of wave energy generation, a guide cover of wave energy generating device is designed by using Fluent simulation software, which prolongs the working life of buoy. In the design of the data acquisition system, the CR1000 data collector with low power consumption and high precision is selected, and the buoy designed in this paper is designed on the external interface. In the design of data communication system, Beidou satellite, which has high reliability and high security, is used to realize the communication and timing function of collecting data, and the combination of Beidou satellite and global positioning system is used to ensure the accuracy of buoy positioning. Beidou satellite communication terminal is connected with the receiving system through serial port. In the design of software system, LabVIEW software with flexible operation, good visibility and strong versatility is selected to develop the system. The data communication with Beidou terminal is realized through VISA control, and the monitoring of ocean elements and the state of buoy are realized. Data query, over-limit alarm and other functions. By testing the data generated by NI-DAQmx software, it is verified that the LabVIEW receiving software can display, set and save the multi-sensor data synchronously, alarm and so on. The small multi-parameter marine buoy monitoring system designed in this paper improves its anticorrosion performance, prolongs its working time, and meets the requirements of offshore waters more in the design of standard body and the selection of hardware. Compared with the existing small marine buoys, it has more advantages, and hopes to provide some reference and help for the relevant marine monitoring departments in China.
【學位授予單位】:上海海洋大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P715.2
【參考文獻】
相關(guān)期刊論文 前10條
1 趙環(huán)宇;孫金偉;范秀濤;郭發(fā)東;張繼明;柴輝;;海洋資料浮標波能供電裝置數(shù)值模擬研究[J];山東科學;2016年06期
2 王世明;李晴;;基于北斗衛(wèi)星導航系統(tǒng)的海洋監(jiān)測浮標通信系統(tǒng)設(shè)計與應用[J];全球定位系統(tǒng);2016年04期
3 黨超群;張鎖平;齊占輝;李明兵;孫東波;;基于北斗衛(wèi)星系統(tǒng)的深遠海GPS波浪浮標數(shù)據(jù)傳輸研究[J];傳感器與微系統(tǒng);2016年01期
4 周田;張輝;張翔;;北斗衛(wèi)星導航系統(tǒng)在智慧城市建設(shè)中的應用[J];全球定位系統(tǒng);2015年01期
5 王波;李民;劉世萱;陳世哲;朱慶林;王紅光;;海洋資料浮標觀測技術(shù)應用現(xiàn)狀及發(fā)展趨勢[J];儀器儀表學報;2014年11期
6 楊瑞;顧群;;基于北斗衛(wèi)星的溢油跟蹤浮標[J];上海海事大學學報;2014年03期
7 戴洪磊;牟乃夏;王春玉;田茂義;;我國海洋浮標發(fā)展現(xiàn)狀及趨勢[J];氣象水文海洋儀器;2014年02期
8 洪常委;;北斗衛(wèi)星導航系統(tǒng)在海洋浮標中的應用[J];聲學與電子工程;2014年02期
9 尹路;李延斌;馬金鋼;;海洋觀測技術(shù)現(xiàn)狀綜述[J];艦船電子工程;2013年11期
10 馬賀兵;蘇登文;翟輝琴;;“北斗”衛(wèi)星導航定位系統(tǒng)在車輛管理運行中的應用與探討[J];測繪與空間地理信息;2013年09期
相關(guān)重要報紙文章 前1條
1 ;2015年中國海洋環(huán)境狀況公報(選登)[N];中國海洋報;2016年
相關(guān)碩士學位論文 前7條
1 孫辰;“白龍”浮標標體設(shè)計及動力學分析[D];杭州電子科技大學;2014年
2 姜琳琳;海洋浮標波浪能供電裝置設(shè)計研究[D];上海海洋大學;2013年
3 時海勇;大型海洋資料浮標岸站監(jiān)控與管理系統(tǒng)開發(fā)[D];中國海洋大學;2012年
4 劉丹;小型多參數(shù)海洋環(huán)境監(jiān)測浮標系統(tǒng)研究[D];上海海洋大學;2012年
5 李立立;基于海洋臺站和浮標的近海海洋觀測系統(tǒng)現(xiàn)狀與發(fā)展研究[D];中國海洋大學;2010年
6 劉斌;帶導流罩的豎軸潮流水輪機水動力性能研究[D];哈爾濱工程大學;2007年
7 孫汝鵬;基于嵌入式技術(shù)的海洋環(huán)境在線監(jiān)測系統(tǒng)的設(shè)計與實現(xiàn)[D];山東大學;2006年
,本文編號:1820246
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1820246.html