大風(fēng)和海洋渦旋對(duì)中國(guó)近海冬季水交換的影響研究
本文選題:冬季大風(fēng) + 譜聚類 ; 參考:《上海海洋大學(xué)》2016年碩士論文
【摘要】:不同海域之間進(jìn)行的水體交換能夠促進(jìn)海洋物質(zhì)的交換,有利于稀釋海洋污染物的濃度,對(duì)海洋環(huán)境的自凈作用具有重要意義;赗OMS海洋數(shù)值模式,本文對(duì)中國(guó)近海海洋動(dòng)力環(huán)境進(jìn)行模擬,通過(guò)引用優(yōu)化的譜混合模型方法對(duì)渤黃海之間的水交換問(wèn)題進(jìn)行研究分析。在此基礎(chǔ)上,分析了一次大風(fēng)過(guò)程對(duì)渤黃海水交換的影響,以及黑潮兩側(cè)渦旋對(duì)東海和黑潮之間水交換的影響。1、渤黃海水交換區(qū)的定義和特征利用ROMS海洋數(shù)值模式對(duì)2006年冬季渤黃海海域的海洋動(dòng)力環(huán)境進(jìn)行模擬,基于溫度和鹽度的模擬結(jié)果,采用優(yōu)化后的的譜混合模型方法進(jìn)行水團(tuán)分析,確定出渤黃海之間的水交換區(qū)。研究發(fā)現(xiàn),冬季,在渤黃海地區(qū)分布著低溫渤海水團(tuán)和高溫黃海水團(tuán),并且黃海水團(tuán)呈“舌”形分布于渤海海峽北部地區(qū)。兩海域之間的水交換區(qū)則表現(xiàn)為沿“舌”形邊緣呈帶狀分布,具有西北——東南的走向趨勢(shì),位于“舌”尖處的水交換區(qū)面積最大,而且黃海最北部的沿岸海域并不參與渤黃海之間的水體交換。2、冬季大風(fēng)對(duì)渤黃海水交換的影響根據(jù)冬季渤黃海海域風(fēng)速隨時(shí)間的變化趨勢(shì)情況,選取一次大風(fēng)事件(2007年2月14日),并以此次大風(fēng)事件為例,探討大風(fēng)事件對(duì)渤黃海水交換區(qū)的影響。研究發(fā)現(xiàn),冬季大風(fēng)事件對(duì)渤黃海之間的水體交換具有促進(jìn)作用,具體表現(xiàn)為:大風(fēng)過(guò)程使黃海暖流對(duì)渤海的入侵更加深入,水交換區(qū)向渤海方向伸展,南部的水交換區(qū)變寬,黃河徑流進(jìn)入渤海后與渤海水的混合區(qū)加大,并發(fā)生北移。大風(fēng)過(guò)后兩天內(nèi),渤海海峽地區(qū)的水交換區(qū)向黃海方向退縮,同時(shí),萊州灣地區(qū)的混合區(qū)也向沿岸方向退去。3、1991-2006年冬季東海大陸架200米水體積通量異常情況基于roms海洋數(shù)值模式對(duì)1991-2006年?yáng)|海海洋動(dòng)力環(huán)境的模擬資料,本文對(duì)1991-2006年期間冬季東海大陸架200米水體積通量異常與流場(chǎng)之間的關(guān)系進(jìn)行分析。研究發(fā)現(xiàn),1997、2003和2004三年的水體積通量表現(xiàn)為異常高值,其中1997年的水體積通量達(dá)到歷史最高值。同時(shí),東海陸架水與黑潮之間的水交換較弱,臺(tái)灣東部一段黑潮向遠(yuǎn)離東海陸架的方向偏移;2000、2002和2005三年的水體積通量表現(xiàn)為異常低值,其中2000年的水體積通量達(dá)到歷史最低值。同時(shí),東海陸架水與黑潮之間的水體交換較強(qiáng),黑潮在臺(tái)灣東北部的入侵更深。4、1997年和2000年?yáng)|海渦旋的移動(dòng)特征通過(guò)分別分析兩個(gè)特殊年份1997年和2000年冬季200米水體積通量的異常情況與相應(yīng)東海渦旋的運(yùn)動(dòng)情況,發(fā)現(xiàn):1997年冬季200米水體積通量達(dá)到歷史最高值,黑潮以西的氣旋渦由東海沿西南方向移向黑潮,黑潮與東海之間水交換區(qū)的面積減小,水交換減弱;2000年冬季200米水體積通量達(dá)到歷史最低值,臺(tái)灣東北部的氣旋式冷渦不明顯,黑潮以西的氣旋渦由黑潮沿西北方向移向東海沿岸,黑潮與東海之間水交換區(qū)的面積增大,水交換能力加強(qiáng)。另外,研究發(fā)現(xiàn),東海渦旋的產(chǎn)生與ENSO有一定的聯(lián)系。5、渦旋對(duì)東海和黑潮之間水交換的影響基于全球海洋中尺度渦旋的分析結(jié)果資料,本文對(duì)東海渦旋進(jìn)行了辨認(rèn)和動(dòng)態(tài)追蹤,對(duì)其時(shí)空變化規(guī)律進(jìn)行了統(tǒng)計(jì)分析,討論了冬季東海渦旋的時(shí)空分布與東海陸架200米水體積通量的關(guān)系。研究發(fā)現(xiàn),黑潮主軸向東海方向的彎曲附近是渦旋的頻發(fā)地,當(dāng)東海渦旋分布在琉球群島西北從黑潮主軸中間段以西到濟(jì)州島以南一帶時(shí),有利于東海與黑潮之間的水交換。另外,黑潮主軸以西由黑潮沿西北方向移向東海陸架的渦旋,能夠減弱東海大陸架200米等深線斷面的水體積通量,促進(jìn)東海與黑潮之間的水交換過(guò)程。通過(guò)統(tǒng)計(jì)渦旋個(gè)數(shù)發(fā)現(xiàn),東海地區(qū)的總渦旋數(shù)越多,尤其是氣旋渦個(gè)數(shù)越多,越有利于東海與黑潮之間的水交換過(guò)程。
[Abstract]:Water exchange between different sea areas can promote the exchange of marine materials, help to dilute the concentration of marine pollutants, and be of great significance to the self purification of the marine environment. Based on the ROMS ocean numerical model, this paper simulates the marine dynamic environment of China's offshore sea, and through the method of cite optimized spectral mixture model to the Bohai the Yellow Sea On the basis of this, the influence of a large wind process on the exchange of Bohai Sea water and the influence of the two vortices on the water exchange between the East China Sea and the Kuroshio.1, the definition and characteristics of the Bohai Sea water exchange area in the Bohai the Yellow Sea sea area in the winter of 2006 are analyzed. The environment is simulated, based on the simulation results of temperature and salinity, the water mass analysis is carried out by the optimized method of spectral mixing model. The water exchange area between Bohai and the Yellow Sea is determined. In the winter, the low temperature Bohai water mass and the high temperature the Yellow Sea water mass are distributed in the Bohai the Yellow Sea region, and the Yellow Sea Water regiment is distributed in the "tongue" form in the Bohai Strait. In the northern area, the water exchange area between the two sea areas shows a zonal distribution along the edge of the "tongue" shape, with the trend of north-west and Southeast, the largest water exchange area at the tip of the tongue, and the coastal waters in the northern part of the Yellow Sea do not participate in the water exchange between Bohai and the Yellow Sea, and the winter winds exchange the sea water to the Bohai Sea. According to the change trend of wind speed with time in the Bohai the Yellow Sea sea area in winter, a large wind event (February 14, 2007) is selected, and the wind event is taken as an example to discuss the influence of the wind event on the Bohai Sea water exchange area. The wind process makes the the Yellow Sea warm current invade Bohai more deeply, the water exchange area extends to the Bohai direction, the water exchange area in the south is broadened, the the Yellow River runoff enters Bohai and the mixing area of Bohai water increases and moves north. In the two days after the wind, the water exchange area of the Bohai Straits shrink from the direction of the Yellow Sea, while the Laizhou Bay area is mixed. The area also receded to the coastal direction of the 200 m water volume flux anomaly in the East China Sea continental shelf in winter.31991-2006, based on the simulation data of the ROMs ocean numerical model on the marine dynamic environment of the East China Sea for 1991-2006 years. The relationship between the 200 m water volume flux anomaly and the flow field in the East China Sea shelf in the winter of 1991-2006 years was analyzed. It is found that the water flux in the 19972003 and the 2004 three years shows an abnormal high value, of which the water volume flux in 1997 reaches the highest historical value. At the same time, the water exchange between the East China Sea shelf water and the Kuroshio is weak, and the east part of the East Taiwan Kuroshio moves away from the East China Sea shelf, and the water flux in the 20002002 and 2005 three years is very low. The water volume flux in 2000 has reached a historical minimum. At the same time, the water exchange between the East China Sea shelf water and the Kuroshio is stronger. The characteristics of the dark tide in the northeast of Taiwan and the movement of the East China Sea in 2000 are analyzed by analyzing the abnormal conditions of the 200 m water volume flux in the two special years in 1997 and 2000 respectively. With the movement of the corresponding vortex in the East China Sea, it is found that the 200 meter water volume flux reached the highest value in winter in 1997. The gas vortex from the west of the Kuroshio moved from the East China Sea to the Kuroshio in the southwest. The area of the water exchange area between the Kuroshio and the East China Sea decreased and the water exchange weakened. In the winter of 2000, the water volume flux of 200 meters reached the historical minimum, and the northeast of Taiwan. The cyclone vortex is not obvious, and the cyclonic vortex west of the Kuroshio moves from the Kuroshio to the East China Sea along the northwest direction. The area of the water exchange area between the Kuroshio and the East China Sea increases and the water exchange capacity is strengthened. In addition, it has been found that the formation of the vortex in the East China Sea has a certain connection with the ENSO.5, and the effect of the vortex on the water exchange between the East China Sea and the Kuroshio is based on the global sea. The data of the analysis of the oceanic mesoscale vortices in the East China Sea have been identified and dynamically traced, and the temporal and spatial variation of the East China Sea is analyzed. The relationship between the spatial and temporal distribution of the East China Sea and the 200 meter water volume of the East China Sea shelf in the East China Sea is discussed. When the East China Sea vortex is distributed in the northwest of the Ryukyu Islands from the middle of the main shaft of the Kuroshio to the south of Jeju Island, it is beneficial to the exchange of water between the East China Sea and the Kuroshio. In addition, the vortex of the main axis of the Kuroshio from the West of the Kuroshio to the East China Sea shelf from the Kuroshio to the East China Sea can weaken the water volume flux of the 200 m ISO section of the East China Sea. The process of water exchange between the East China Sea and the Kuroshio. Through the number of statistical vortices, it is found that the more the total vortex number in the East China Sea, the more the number of cyclones, the more conducive to the water exchange between the East China Sea and the Kuroshio.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:P731.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張宇銘;宋朝陽(yáng);吳克儉;張淑芳;;環(huán)渤海排污口臨近海域水交換能力研究[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
2 孫英蘭,張?jiān)矫?丁字灣物質(zhì)輸運(yùn)及水交換能力研究[J];青島海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
3 鮑獻(xiàn)文;鞠霞;吳德星;;呂宋海峽120°E斷面水交換特征[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 李希彬;孫曉燕;牛福新;宋軍;;半封閉海灣的水交換數(shù)值模擬研究[J];海洋通報(bào);2012年03期
5 李希彬;張秋豐;牛福新;葉風(fēng)娟;李杰;李軼斐;王魯寧;崔健;;渤海灣水交換的數(shù)值研究[J];海洋學(xué)研究;2013年03期
6 董禮先,蘇紀(jì)蘭;象山港水交換數(shù)值研究──Ⅰ.對(duì)流-擴(kuò)散型的水交換模式[J];海洋與湖沼;1999年04期
7 董禮先,蘇紀(jì)蘭;象山港水交換數(shù)值研究、.模型應(yīng)用和水交換研究[J];海洋與湖沼;1999年05期
8 姚炎明;彭輝;杜雅杰;劉蓮;;象山港分區(qū)水交換數(shù)值研究[J];海洋學(xué)報(bào)(中文版);2014年01期
9 趙亮,魏皓,趙建中;膠州灣水交換的數(shù)值研究[J];海洋與湖沼;2002年01期
10 李小寶;袁德奎;陶建華;;大型海灣水交換計(jì)算中隨機(jī)游動(dòng)方法的應(yīng)用研究[J];應(yīng)用數(shù)學(xué)和力學(xué);2011年05期
相關(guān)會(huì)議論文 前7條
1 張正光;趙瑋;劉秦玉;管守德;李培良;;呂宋海峽水交換時(shí)空變化規(guī)律及其影響機(jī)制的初步研究[A];“海洋動(dòng)力過(guò)程與天氣、氣候變化”聯(lián)合學(xué)術(shù)年會(huì)論文摘要集[C];2009年
2 袁德奎;呂迎雪;孫健;陶建華;;用關(guān)聯(lián)矩陣研究天津港的水交換[A];第二十一屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第八屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨兩岸船舶與海洋工程水動(dòng)力學(xué)研討會(huì)文集[C];2008年
3 趙亮;魏皓;趙建中;;膠州灣水交換的數(shù)值研究[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年
4 王聰;林軍;章守宇;;大亞灣水交換的數(shù)值模擬研究[A];2007年中國(guó)水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)暨水產(chǎn)微生態(tài)調(diào)控技術(shù)論壇論文摘要匯編[C];2007年
5 孫振宇;胡建宇;;基于Argo浮標(biāo)觀測(cè)的呂宋海峽水交換[A];“海洋動(dòng)力過(guò)程與天氣、氣候變化”聯(lián)合學(xué)術(shù)年會(huì)論文摘要集[C];2009年
6 李莉;趙曉冬;尤薇;吳麗華;;防城港海灣污水?dāng)U散試驗(yàn)研究[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2009年
7 陶建華;;天津近岸海域生態(tài)環(huán)境特性研究與模擬[A];第二十五屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第十二屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集(下冊(cè))[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 趙玉勇;什么是程序[N];電腦報(bào);2003年
相關(guān)博士學(xué)位論文 前8條
1 韓欽臣;呂宋海峽水交換的時(shí)空變化特征及其影響機(jī)理研究[D];上海師范大學(xué);2015年
2 孫健;海灣、近岸海域水交換研究的關(guān)聯(lián)矩陣方法及應(yīng)用[D];天津大學(xué);2007年
3 宋軍;水交換模型的理論方法及應(yīng)用研究[D];中國(guó)海洋大學(xué);2010年
4 蘇健;跨陸架鋒水交換的數(shù)值研究[D];中國(guó)海洋大學(xué);2005年
5 李小寶;大型海灣水交換高效計(jì)算方法研究[D];天津大學(xué);2011年
6 謝玲玲;西北太平洋環(huán)流及其與南海水交換研究[D];中國(guó)海洋大學(xué);2009年
7 趙軍凱;長(zhǎng)江中下游江湖水交換規(guī)律研究[D];華東師范大學(xué);2011年
8 趙偉;呂宋海峽水交換的季節(jié)性變化研究[D];中國(guó)科學(xué)院研究生院(海洋研究所);2007年
相關(guān)碩士學(xué)位論文 前10條
1 王道生;渤海灣水交換及泥沙輸運(yùn)特性的數(shù)值模擬研究[D];天津大學(xué);2013年
2 張瑞冰;黑潮與東海水交換定量估算[D];中國(guó)科學(xué)院研究生院(海洋研究所);2016年
3 李靜;大風(fēng)和海洋渦旋對(duì)中國(guó)近海冬季水交換的影響研究[D];上海海洋大學(xué);2016年
4 何磊;海灣水交換數(shù)值模擬方法研究[D];天津大學(xué);2004年
5 張晶;呂宋海峽水交換的季節(jié)變化研究[D];國(guó)家海洋局第一海洋研究所;2013年
6 彭輝;象山港水交換數(shù)值研究[D];浙江大學(xué);2013年
7 張偉;近岸海域水交換特性及其影響研究[D];天津大學(xué);2014年
8 呂迎雪;海灣水交換數(shù)值模擬方法的研究及其應(yīng)用[D];天津大學(xué);2009年
9 王雪竹;南海中層水、中層環(huán)流及其與西北太平洋中層水交換研究[D];中國(guó)海洋大學(xué);2010年
10 馬倩;大風(fēng)作用下渤海環(huán)流和水交換的數(shù)值模擬研究[D];中國(guó)海洋大學(xué);2014年
,本文編號(hào):1811978
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1811978.html