江蘇沿海風(fēng)暴潮數(shù)值預(yù)報(bào)模式研究
本文選題:江蘇沿海 + ADCIRC。 參考:《上海海洋大學(xué)》2016年碩士論文
【摘要】:風(fēng)暴潮是由于大氣強(qiáng)烈擾動(dòng),引起海平面異常升高或海平面異常下降的現(xiàn)象。風(fēng)暴潮災(zāi)害是我國(guó)面臨的主要海洋災(zāi)害之一,幾乎遍及中國(guó)沿海。登陸我國(guó)的臺(tái)風(fēng)和強(qiáng)溫帶天氣過(guò)程往往造成風(fēng)暴潮災(zāi)害,其成災(zāi)頻率高、致災(zāi)強(qiáng)度大,造成的人員和經(jīng)濟(jì)損失慘重,目前已列入我國(guó)的巨災(zāi)種類。開展風(fēng)暴潮災(zāi)害風(fēng)險(xiǎn)評(píng)估,完成風(fēng)險(xiǎn)區(qū)劃,既能增強(qiáng)國(guó)家和地方政府風(fēng)暴潮災(zāi)害的防御能力,又可以有效的降低風(fēng)暴潮災(zāi)害風(fēng)險(xiǎn),減少災(zāi)害造成的人員傷亡和財(cái)產(chǎn)損失,為沿海地區(qū)經(jīng)濟(jì)發(fā)展布局等提供科學(xué)依據(jù)。因此基于實(shí)況資料以及數(shù)值模式模擬對(duì)于風(fēng)暴潮的分析具有十分重要的意義。風(fēng)暴潮的預(yù)報(bào)在海洋預(yù)報(bào)業(yè)務(wù)中地位十分重要。風(fēng)暴潮的預(yù)報(bào)主要分為經(jīng)驗(yàn)統(tǒng)計(jì)預(yù)報(bào)和數(shù)值模擬預(yù)報(bào)兩種方法。經(jīng)驗(yàn)統(tǒng)計(jì)的方法主要采用回歸分析和統(tǒng)計(jì)相關(guān)來(lái)建立指標(biāo)站的風(fēng)和氣壓與特定港口風(fēng)暴潮位之間的經(jīng)驗(yàn)預(yù)報(bào)方程或相關(guān)圖表。此方法局限性較大,只能在少數(shù)有多年資料積累的特定港口應(yīng)用。而風(fēng)暴潮的數(shù)值模擬方法則克服了以上缺點(diǎn)。因此在實(shí)際業(yè)務(wù)中,預(yù)報(bào)員一般采用經(jīng)驗(yàn)預(yù)報(bào)與數(shù)值預(yù)報(bào)相結(jié)合的方法,開展風(fēng)暴潮預(yù)報(bào)業(yè)務(wù)。本文選擇的研究區(qū)域是江蘇沿海地區(qū),重點(diǎn)研究區(qū)域是江蘇省南通沿海岸段以及連云港岸段。首先基于ADCIRC海洋模式建立一個(gè)覆蓋東中國(guó)海的水動(dòng)力數(shù)值模式,在江蘇省沿海岸段加密。通過(guò)對(duì)歷史臺(tái)風(fēng)案列進(jìn)行風(fēng)暴潮模擬,并與實(shí)測(cè)資料的結(jié)果進(jìn)行驗(yàn)證對(duì)比,對(duì)比結(jié)果顯示模擬計(jì)算數(shù)值與實(shí)測(cè)數(shù)據(jù)資料比較接近,誤差在可允許范圍之內(nèi),得出了ADCIRC風(fēng)暴潮模式可用于江蘇沿海地區(qū)的增水研究。為了研究臺(tái)風(fēng)特征參數(shù)對(duì)于風(fēng)暴增水的影響機(jī)制,文章中進(jìn)行了一系列單變量敏感性實(shí)驗(yàn)。本文主要選取了臺(tái)風(fēng)中心氣壓、最大風(fēng)速半徑、臺(tái)風(fēng)中心移速以及臺(tái)風(fēng)移動(dòng)路徑4個(gè)變量進(jìn)行敏感性實(shí)驗(yàn),并設(shè)置了三條不同的臺(tái)風(fēng)路徑(N1為靠近呂四北向路徑,N2為遠(yuǎn)離呂四北向路徑,NW為西北向路徑)。結(jié)果表明:當(dāng)臺(tái)風(fēng)其他特征參數(shù)保持不變情況下,臺(tái)風(fēng)中心氣壓值越低,增水值越大,增水極值也越高;中心氣壓與增水極值呈一定的線性關(guān)系。對(duì)于N1移向的臺(tái)風(fēng),臺(tái)風(fēng)中心氣壓平均每下降30hPa,增水升高1.5838m;對(duì)于N2移向的臺(tái)風(fēng),臺(tái)風(fēng)中心氣壓平均每下降30hPa,增水升高1.8824m;對(duì)于NW移向的臺(tái)風(fēng),臺(tái)風(fēng)中心氣壓平均每下降30hPa時(shí),增水極值平均升高2.1037m。在臺(tái)風(fēng)移動(dòng)速度、臺(tái)風(fēng)中心氣壓均相同情形下,臺(tái)風(fēng)最大風(fēng)速半徑越大,增水極值發(fā)生的時(shí)刻也越早。最大風(fēng)速半徑與增水極值整體上呈現(xiàn)出正相關(guān)關(guān)系,最大風(fēng)速半徑越大,增水極值也越大,隨著最大風(fēng)速半徑的不斷增大,增水極值的升高趨勢(shì)也會(huì)變緩,當(dāng)最大風(fēng)速半徑增大到某個(gè)數(shù)值時(shí),增水極值不在增大,而會(huì)下降。對(duì)于N1移向的臺(tái)風(fēng),當(dāng)最大風(fēng)速半徑增大為40km時(shí),增水極值也達(dá)到最大,當(dāng)最大風(fēng)速半徑大與40km時(shí),增水極值開始下降;對(duì)于N2移向的臺(tái)風(fēng),當(dāng)最大風(fēng)速半徑為60km時(shí),增水極值也達(dá)到最大,最大風(fēng)速半徑超過(guò)60km時(shí),增水極值開始下降;對(duì)于NW移向的臺(tái)風(fēng),隨著選取的四個(gè)最大風(fēng)速半徑的不斷增大,增水極值也在一直增大,不過(guò)最大風(fēng)速半徑為80km時(shí)的增水極值梯度明顯變小。當(dāng)臺(tái)風(fēng)中心氣壓、臺(tái)風(fēng)最大風(fēng)速半徑保持不變情況下,臺(tái)風(fēng)的移速越大,增水極值出現(xiàn)時(shí)刻越早,不過(guò)當(dāng)臺(tái)風(fēng)移速過(guò)大時(shí),并不有利于增水。風(fēng)應(yīng)力對(duì)于水體的作用并不是瞬時(shí)完成的,它需要一定的時(shí)間積累,臺(tái)風(fēng)中心移動(dòng)速度越大,則風(fēng)應(yīng)力作用在水體上的時(shí)間越短,水位的變化過(guò)程也越短。從N2移動(dòng)方向的臺(tái)風(fēng)增水曲線可以得知,移動(dòng)速度越大,增水極值越小,反之,則越大。在所選取的三條路徑中,NW移向的臺(tái)風(fēng)所導(dǎo)致的風(fēng)暴增水整體上最高,增水極值最大,而N1移向的臺(tái)風(fēng)所導(dǎo)致的風(fēng)暴增水最低,增水極值最小。說(shuō)明在這三條路徑中,NW移向的臺(tái)風(fēng)最有利于江蘇沿海地區(qū)的增水。
[Abstract]:Storm surge is caused by strong atmospheric disturbance, which causes abnormal elevation of sea level or abnormality of sea level. Storm surge disaster is one of the major marine disasters in China, almost all over the coastal areas of China. The typhoon and strong temperate zone in China often cause storm tide disaster, which has high frequency and high intensity of disaster. There is a heavy loss of personnel and economy. At present, it has been included in the catastrophe of China. Carrying out the risk assessment of storm tide disaster and completing the risk zoning can not only enhance the defense ability of the storm surge disaster of the state and local government, but also effectively reduce the risk of storm tide disaster, reduce the casualties and property loss made by the disaster, and make the coastal area economy. It provides a scientific basis for the development of the layout and so on. Therefore, it is of great significance for the analysis of storm tide based on the fact data and numerical model simulation. The forecast of storm tide is very important in the ocean forecasting business. The forecast of storm tide is mainly divided into two methods: empirical and statistical prediction and numerical model prediction. The regression analysis and statistical correlation are used to establish the empirical equation or correlation chart between the wind and pressure of the index station and the specific port storm tidal level. This method is limited and can only be used in a few ports with years of data accumulation. The numerical simulation method of storm tide overcomes the above shortcomings. In the business, the forecaster generally adopts the method of combining experiential forecasting with numerical forecast to carry out the storm surge forecast business. The research area selected in this paper is the coastal area of Jiangsu, the key research area is the coastal section of Nantong and the Lianyungang Bank of Jiangsu province. First, based on the ADCIRC ocean model, the hydrodynamic number of the East China Sea is set up. The value model is encrypted along the coast of Jiangsu province. Through the storm tide simulation of the historical typhoon case, the comparison results are compared with the measured data. The comparison results show that the simulated calculation value is close to the measured data, and the error is within the allowable range, and the ADCIRC storm tide model can be used in the coastal areas of Jiangsu. In order to study the effect mechanism of typhoon characteristic parameters on storm surge, a series of single variable sensitivity experiments are carried out in this paper. This paper mainly selects 4 variables, the center pressure of the typhoon, the maximum wind radius, the velocity of the typhoon center and the moving path of the typhoon, and set up three different typhoon roads. The diameter (N1 is near the north route of LV four, N2 is far away from the north route of LV four and NW is north-west path). The results show that when the other characteristic parameters of the typhoon remain unchanged, the lower the central pressure of the typhoon, the greater the water increasing value, the higher the extreme value of the water increasing; the central pressure and the extreme value of water increase have a linear relationship. For the typhoon and typhoon moving towards the N1, the typhoon, the typhoon is in the typhoon, and the typhoon is in the typhoon, the typhoon is in the typhoon, the typhoon is in the typhoon, the typhoon is in the typhoon, the typhoon is in the typhoon, the typhoon is in the typhoon, the typhoon is in the typhoon, the typhoon The average heart pressure drops 30hPa, and the increase of water increases 1.5838m. For the typhoon of N2 shift, the average pressure of the typhoon center is decreased by 30hPa, and the increase of water increases 1.8824m. For the typhoon which moves toward the NW, the average increase of the central pressure of the typhoon is equal to the typhoon moving speed, and the typhoon center pressure is the same, the typhoon's center pressure is the same, the typhoon is the most The larger the radius of the large wind speed is, the earlier the extreme value of the water increase occurs. The maximum wind radius has a positive correlation with the maximum water increase, the greater the radius of the maximum wind speed, the greater the extreme value of the water increasing. With the increasing radius of the maximum wind speed, the increasing trend of the extreme value of the water increase will also slow down, when the maximum wind radius increases to a certain value. The extreme value of water increasing is not increasing, but it will decrease. For the N1 moving typhoon, when the maximum wind radius increases to 40km, the maximum water increase reaches the maximum. When the maximum wind radius is large and 40km, the extreme value of the water increase begins to decrease. For the typhoon with the N2 shift, the maximum water increase is also maximum when the maximum wind radius is 60km, and the maximum wind speed is more than 60K. At m, the extreme value of water increase begins to decrease, and for the typhoon which moves toward NW, the maximum water increase is increasing with the increasing radius of the four maximum wind speed, but the gradient of the maximum water increase is obviously smaller when the maximum wind radius is 80km. When the central pressure of the typhoon, the maximum wind speed of the typhoon keeps the same, the faster the speed of the typhoon, the greater the speed of the typhoon. The increase of water extremum is earlier, but it is not beneficial to increase water when the speed of typhoon moves too much. The effect of wind stress on water is not completed instantaneously. It needs a certain time to accumulate, the greater the moving speed of the typhoon center is, the shorter the time of the wind stress is on the water body and the shorter the process of the water level change. The direction of the movement of the water level is from the direction of N2. The greater the velocity of the typhoon, the greater the moving speed, the smaller the maximum water increase, and vice versa. In the selected three paths, the storm surge caused by the NW moving to the typhoon is the highest and the maximum water increase, while the storm caused by the N1 moving typhoon is the lowest, and the maximum water increase is minimum. It is indicated that in the three paths, the NW moves toward the maximum. The typhoon is most beneficial to the increase of water in the coastal areas of Jiangsu.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:P731.34
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王喜年;風(fēng)暴潮預(yù)報(bào)知識(shí)講座[J];海洋預(yù)報(bào);2001年03期
2 王喜年;風(fēng)暴潮預(yù)報(bào)知識(shí)講座 第四講 風(fēng)暴潮預(yù)報(bào)技術(shù)(1)[J];海洋預(yù)報(bào);2001年04期
3 馮利華;風(fēng)暴潮等級(jí)和災(zāi)情的定量表示法[J];海洋科學(xué);2002年01期
4 王喜年;風(fēng)暴潮預(yù)報(bào)知識(shí)講座 第七講 風(fēng)暴潮風(fēng)險(xiǎn)分析與計(jì)算[J];海洋預(yù)報(bào);2002年04期
5 王喜年;關(guān)于溫帶風(fēng)暴潮[J];海洋預(yù)報(bào);2005年S1期
6 劉清容;于建生;韓笑;;風(fēng)暴潮研究綜述及防災(zāi)減災(zāi)對(duì)策[J];科技風(fēng);2009年12期
7 謝麗;張振克;;近20年中國(guó)沿海風(fēng)暴潮強(qiáng)度、時(shí)空分布與災(zāi)害損失[J];海洋通報(bào);2010年06期
8 李闊;李國(guó)勝;;風(fēng)暴潮風(fēng)險(xiǎn)研究進(jìn)展[J];自然災(zāi)害學(xué)報(bào);2011年06期
9 張華慶;張桂平;孫熙平;;風(fēng)暴潮浪與深水結(jié)構(gòu)物相互作用研究綜述[J];水道港口;2012年05期
10 楊曉君;;天津沿海風(fēng)暴潮預(yù)警的減災(zāi)成效[J];城市與減災(zāi);2013年03期
相關(guān)會(huì)議論文 前10條
1 張延廷;王以嬌;;風(fēng)暴潮的預(yù)警與減災(zāi)對(duì)策[A];論沿海地區(qū)減災(zāi)與發(fā)展——全國(guó)沿海地區(qū)減災(zāi)與發(fā)展研討會(huì)論文集[C];1991年
2 徐漢興;顧明杰;;關(guān)于臺(tái)風(fēng)風(fēng)暴潮特征的分析[A];中國(guó)航海學(xué)會(huì)航標(biāo)專業(yè)委員會(huì)測(cè)繪學(xué)組學(xué)術(shù)研討會(huì)學(xué)術(shù)交流論文集[C];2006年
3 譚亞;張君倫;王瑩輝;;福建省沿海風(fēng)暴潮特性及其預(yù)報(bào)[A];中國(guó)海洋湖沼學(xué)會(huì)水文氣象分會(huì)、中國(guó)海洋湖沼學(xué)會(huì)潮汐及海平面專業(yè)委員會(huì)、中國(guó)海洋湖沼學(xué)會(huì)計(jì)算海洋物理專業(yè)委員會(huì)、山東(暨青島市)海洋湖沼學(xué)會(huì)2007年學(xué)術(shù)研討會(huì)論文摘要集[C];2007年
4 譚亞;張君倫;王瑩輝;;福建省沿海風(fēng)暴潮特性及其預(yù)報(bào)[A];中國(guó)海洋湖沼學(xué)會(huì)第九次全國(guó)會(huì)員代表大會(huì)暨學(xué)術(shù)研討會(huì)論文摘要匯編[C];2007年
5 楊曉君;磊磊;呂江津;何群英;王穎;;對(duì)一次渤海風(fēng)暴潮過(guò)程數(shù)值模擬檢驗(yàn)[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2009年
6 王志力;陸永軍;左利欽;;甌江河口風(fēng)暴潮數(shù)值模擬[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(下冊(cè))[C];2009年
7 張曉慧;盛春雁;邵滋和;;青島沿海風(fēng)暴潮分析[A];中國(guó)氣象學(xué)會(huì)2005年年會(huì)論文集[C];2005年
8 吳明月;周連科;邊清河;;滄州沿海風(fēng)暴潮氣候統(tǒng)計(jì)特征[A];中國(guó)氣象學(xué)會(huì)2007年年會(huì)氣候變化分會(huì)場(chǎng)論文集[C];2007年
9 沈岳峰;;濱海新區(qū)風(fēng)暴潮與渤海沿岸諸站增水的相關(guān)性研究[A];全國(guó)優(yōu)秀青年氣象科技工作者學(xué)術(shù)研討會(huì)論文集[C];2006年
10 劉學(xué)萍;武強(qiáng);;煙臺(tái)風(fēng)暴潮分析與預(yù)報(bào)預(yù)警系統(tǒng)[A];中國(guó)氣象學(xué)會(huì)2007年年會(huì)天氣預(yù)報(bào)預(yù)警和影響評(píng)估技術(shù)分會(huì)場(chǎng)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 田東霖;專家解析緬甸大災(zāi)緣由 強(qiáng)調(diào)應(yīng)重視風(fēng)暴潮預(yù)警[N];中國(guó)海洋報(bào);2008年
2 王中建;風(fēng)暴潮攪動(dòng)全球的災(zāi)害[N];中國(guó)海洋報(bào);2013年
3 周潤(rùn)健;天津?yàn)I海新區(qū)全面啟動(dòng)風(fēng)暴潮預(yù)報(bào)系統(tǒng)[N];中國(guó)氣象報(bào);2007年
4 馬高飛邋通訊員 盛春巖;山東沿海風(fēng)暴潮預(yù)報(bào)添“模式”[N];中國(guó)氣象報(bào);2007年
5 牛健存;河北省沿海風(fēng)暴潮預(yù)報(bào)技術(shù)通過(guò)國(guó)家鑒定[N];河北日?qǐng)?bào);2006年
6 ;我國(guó)風(fēng)暴潮的監(jiān)測(cè)與預(yù)報(bào)[N];中國(guó)水利報(bào);2008年
7 ;加強(qiáng)防御風(fēng)暴潮工作[N];中國(guó)水利報(bào);2008年
8 本報(bào)記者 張一玲 實(shí)習(xí)記者 王秋蓉;“‘桑美’不會(huì)引發(fā)特大風(fēng)暴潮”[N];中國(guó)海洋報(bào);2006年
9 徐彬;風(fēng)暴潮:中國(guó)頻繁遭遇的海洋災(zāi)害[N];南方周末;2005年
10 記者 蘇濤;風(fēng)暴潮預(yù)報(bào)顯威力[N];中國(guó)海洋報(bào);2000年
相關(guān)博士學(xué)位論文 前10條
1 梁森棟;海洋環(huán)境中結(jié)構(gòu)基礎(chǔ)沖刷防護(hù)措施及預(yù)警模型研究[D];清華大學(xué);2014年
2 張晨;流—流耦合效應(yīng)對(duì)南海北部風(fēng)暴潮影響的數(shù)值模擬研究[D];中國(guó)科學(xué)院研究生院(海洋研究所);2016年
3 聶會(huì);河口臺(tái)風(fēng)暴潮研究[D];浙江大學(xué);2014年
4 付慶軍;渤海灣溫帶風(fēng)暴潮數(shù)值計(jì)算模式的研究與應(yīng)用[D];天津大學(xué);2010年
5 徐亞男;風(fēng)暴潮與波浪耦合數(shù)值預(yù)報(bào)模型的研究[D];天津大學(xué);2012年
6 馮興如;重點(diǎn)區(qū)臺(tái)風(fēng)風(fēng)暴潮數(shù)值預(yù)報(bào)與災(zāi)害評(píng)估研究[D];中國(guó)科學(xué)院研究生院(海洋研究所);2012年
7 盧美;浙江海岸臺(tái)風(fēng)風(fēng)暴潮漫堤風(fēng)險(xiǎn)評(píng)估研究[D];浙江大學(xué);2013年
8 紀(jì)芳;渤海和黃海北部沿岸海洋動(dòng)力災(zāi)害研究[D];中國(guó)科學(xué)院研究生院(海洋研究所);2010年
9 趙鵬;渤海寒潮風(fēng)暴潮增水風(fēng)險(xiǎn)的數(shù)值研究[D];中國(guó)海洋大學(xué);2010年
10 鄭立松;風(fēng)暴潮—天文潮—波浪耦合模型及其在杭州灣的應(yīng)用[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張操;廣西北部灣風(fēng)暴潮的數(shù)值模擬[D];上海海洋大學(xué);2014年
2 謝洋;海平面上升對(duì)珠江口風(fēng)暴潮增水和波浪的影響研究[D];東南大學(xué);2015年
3 殷鍇;風(fēng)暴潮作用下橫門東出海航道泥沙沖淤研究[D];東南大學(xué);2015年
4 吳亞楠;山東沿海臺(tái)風(fēng)暴潮數(shù)值模擬與統(tǒng)計(jì)分析[D];中國(guó)海洋大學(xué);2015年
5 付元沖;長(zhǎng)江口沿海地區(qū)溫帶風(fēng)暴潮預(yù)報(bào)模式的建立及應(yīng)用[D];華東師范大學(xué);2016年
6 黃山;瓊州海峽風(fēng)暴潮數(shù)值模擬與不同臺(tái)風(fēng)路徑對(duì)增水的影響研究[D];華南理工大學(xué);2016年
7 韓小燕;蒼南縣風(fēng)暴潮災(zāi)害風(fēng)險(xiǎn)評(píng)估研究[D];浙江大學(xué);2016年
8 李旋;江蘇沿海風(fēng)暴潮數(shù)值預(yù)報(bào)模式研究[D];上海海洋大學(xué);2016年
9 劉永玲;海浪與風(fēng)暴潮相互作用對(duì)風(fēng)暴潮影響的數(shù)值研究[D];中國(guó)海洋大學(xué);2007年
10 劉青青;臺(tái)風(fēng)暴潮分級(jí)模型的建立及應(yīng)用[D];中國(guó)海洋大學(xué);2009年
,本文編號(hào):1808566
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1808566.html