高回收率低溫多效工藝研究
本文選題:海水淡化 + 低溫多效�。� 參考:《天津大學(xué)》2016年碩士論文
【摘要】:針對日產(chǎn)2.5萬噸高回收率低溫多效系統(tǒng)設(shè)計了四效平流、六效逆流、十效逆流和十四效逆流四種不同的工藝,分別從物料守衡、能量守衡和熱量傳遞方面對工藝中的蒸發(fā)器、冷凝器、蒸汽噴射器以及閃蒸罐等設(shè)備建立了數(shù)學(xué)模型。經(jīng)過模擬計算四種工藝的造水比分別為7.19、7.78、12.02和16.8,單位蒸發(fā)面積分別為399.7、275、420.68和674.13m~2/(kg/s),動力蒸汽的用量分別為144.84、133.83、86.63和61.99t/h。效數(shù)增加時造水比逐漸增大,動力蒸汽用量降低。在產(chǎn)水量一定的條件下,十四效逆流造水比最大,所需要的動力蒸汽的量最少,但同時其所需要的單位蒸發(fā)面積最大。有效能損失計算發(fā)現(xiàn),四種不同的工藝的有效能的利用率均低于20%,其中蒸汽噴射器的嗾損失占有較大的比例。另外本文對操作條件對工藝性能的影響作了研究,發(fā)現(xiàn)工藝參數(shù)中抽汽位置、濃縮比、換熱溫差、進(jìn)料海水鹽度等因素對工藝性能的影響較大。隨著抽汽位置的后移,造水比呈現(xiàn)出先增大后減小的規(guī)律。六效逆流時在第五效為最佳抽汽位置,十效逆流時第八效為最佳抽汽位置,十四效逆流時第十二效為最佳抽汽位置;動力蒸汽壓力變大時造水比提高,單位冷卻海水量降低;產(chǎn)品水量增大時,造水比保持不變,單位蒸發(fā)面積和動力蒸汽量隨之等比例增加;進(jìn)料海水鹽度增大時,單位換熱面積也會增大;當(dāng)傳熱總溫差增大時,動力蒸汽量增大,造水比降低,單位換熱面積減少;濃縮比增大時,加熱蒸汽量、抽取蒸汽量和動力蒸汽量都減少,造水比增大,單位冷卻海水量增大,單位換熱面積增大,進(jìn)料海水量減少。研究結(jié)果可以對實際生產(chǎn)和過程優(yōu)化以及低溫多效工藝的選擇提供一定的理論依據(jù)。
[Abstract]:Four different processes of four-effect advection, six-effect countercurrent, 10-effect countercurrent and 14-effect countercurrent are designed for the 25000 ton per day high recovery and low temperature multi-effect system. The evaporators in the process are operated from the aspects of material balance, energy balance and heat transfer, respectively. The mathematical model of condenser, steam ejector and flash tank is established. The water ratio of the four processes is 7.19 ~ 7.781.02 and 16.8respectively, the evaporation area is 399.7275420.68 and 674.13mg / kg 路s ~ (-1) / s ~ (-1), and the power steam consumption is 144.84133.83 ~ 86.63 and 61.99 t / h, respectively. With the increase of validity, the ratio of water to water gradually increased and the amount of dynamic steam decreased. Under the condition of constant water yield, the 14 effect countercurrent water ratio is the largest, the amount of power steam needed is the least, but the unit evaporation area is the largest at the same time. The effective loss calculation shows that the effective utilization ratio of the four different processes is lower than 20 percent, and the steam ejector has a large proportion of the loss of steam ejector. In addition, the effect of operating conditions on the process performance is studied. It is found that the extraction position, concentration ratio, heat transfer temperature difference and salinity of seawater feed have great influence on the process performance. With the backward shift of the extraction position, the water ratio increases first and then decreases. The best extraction position is in the fifth effect, the eighth effect in the ten effect countercurrent, and the optimum extraction position in the fourteen effect countercurrent, the water production ratio increases with the increase of the power steam pressure, and the unit cooling seawater volume decreases. When the water quantity of the product increases, the ratio of water to water remains constant, and the ratio of unit evaporation area to power steam quantity increases, and the unit heat exchange area also increases when the salinity of seawater is increased, and when the total heat transfer temperature difference increases, the power steam quantity increases. With the increase of concentration ratio, the amount of heating steam, the quantity of extraction steam and the quantity of dynamic steam decrease, the ratio of water to water increases, the amount of unit cooling seawater increases, the unit heat exchange area increases, and the amount of seawater in feed decreases. The results can provide some theoretical basis for practical production and process optimization as well as the selection of low temperature multi-effect process.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:P747
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 江克忠;王玉川;胡鈺;魏林瑞;;冷凍法海水淡化技術(shù)進(jìn)展[J];工業(yè)水處理;2015年05期
2 李強(qiáng);任建波;苗超;劉鴻雁;;傾斜式太陽能蒸餾海水淡化研究進(jìn)展[J];現(xiàn)代化工;2015年04期
3 陸世鋒;;我國水資源管理現(xiàn)狀及對策[J];農(nóng)民致富之友;2014年22期
4 田博;;淺談我國水資源保護(hù)現(xiàn)狀與建議[J];環(huán)境與生活;2014年16期
5 李保軍;;低溫多效蒸餾技術(shù)在鋼鐵工業(yè)節(jié)能減排中的應(yīng)用[J];工業(yè)技術(shù)創(chuàng)新;2014年02期
6 楊春;;我國水資源保護(hù)現(xiàn)狀及思考[J];資源節(jié)約與環(huán)保;2014年04期
7 申龍;高瑞昶;;膜蒸餾技術(shù)最新研究應(yīng)用進(jìn)展[J];化工進(jìn)展;2014年02期
8 趙繼芳;;我國水資源污染的現(xiàn)狀、原因及對策[J];科技創(chuàng)新與應(yīng)用;2013年35期
9 盧濤;陳軍;沈勝強(qiáng);;低溫多效蒸發(fā)海水淡化系統(tǒng)不同進(jìn)料方式的熱力學(xué)分析[J];熱科學(xué)與技術(shù);2012年02期
10 潮輪;;世界水資源現(xiàn)狀堪憂 水問題挑戰(zhàn)異常嚴(yán)峻[J];生態(tài)經(jīng)濟(jì);2012年05期
相關(guān)碩士學(xué)位論文 前8條
1 陳軍;低溫多效蒸發(fā)海水淡化系統(tǒng)工藝流程模擬及優(yōu)化[D];北京化工大學(xué);2013年
2 張Ym;低溫多效海水淡化經(jīng)濟(jì)性研究及降低制水成本的措施[D];華北電力大學(xué);2012年
3 王紅菊;低溫多效海水淡化系統(tǒng)模擬分析[D];天津大學(xué);2012年
4 劉大偉;低溫多效蒸發(fā)海水淡化系統(tǒng)性能研究[D];大連理工大學(xué);2011年
5 郝冬青;低溫多效蒸餾海水淡化流程能量優(yōu)化[D];天津科技大學(xué);2011年
6 孫甜悅;低溫多效蒸發(fā)海水淡化裝置進(jìn)水流程分析[D];大連理工大學(xué);2010年
7 時巖;低溫多效海水淡化過程模擬[D];天津大學(xué);2009年
8 謝冬雷;帶熱壓縮的低溫多效蒸發(fā)海水淡化系統(tǒng)研究[D];大連理工大學(xué);2007年
,本文編號:1781378
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1781378.html