天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 海洋學(xué)論文 >

淺水波越過(guò)海底周期圓臺(tái)陣列的能帶結(jié)構(gòu)

發(fā)布時(shí)間:2018-04-04 18:26

  本文選題:能帶結(jié)構(gòu) 切入點(diǎn):Bloch原理 出處:《廣西民族大學(xué)》2016年碩士論文


【摘要】:自上世紀(jì)90年代以來(lái),在固體力學(xué)中具有廣泛應(yīng)用的能帶理論被拓廣到研究液體表面波在海底周期排列的無(wú)窮陣列結(jié)構(gòu)上的傳播并取得大量成果.然而很遺憾,二十多年來(lái)國(guó)際上所有的相關(guān)研究,幾乎全都局限于簡(jiǎn)單的分段或分片常數(shù)深度的底部結(jié)構(gòu),如二維矩形臺(tái)階系列和三維(出水、水下或底部鉆孔)直立圓柱陣列或直立棱柱陣列等,而周期性排列的變水深無(wú)限結(jié)構(gòu)陣列幾乎從未被研究過(guò),原因在于變水深情形下,若采用淺水波方程為控制方程,則需要求解變系數(shù)偏微分方程或常微分方程,若采用葉氏方程或者緩坡類(lèi)方程,由于線性波色散關(guān)系中波數(shù)為水深函數(shù)的隱函數(shù),則需要求解系數(shù)為隱函數(shù)形式的偏微分方程或常微分方程.本學(xué)位論文研究線性淺水波越過(guò)海底周期排列的無(wú)限圓臺(tái)陣列的能帶結(jié)構(gòu).顯然,在圓臺(tái)之上的水深是連續(xù)變化的,稱(chēng)為變水深,這是以往有關(guān)液體表面波能帶結(jié)構(gòu)研究中極少涉及的.因?yàn)楸疚目紤]的是線性淺水波,所以采用的控制方程為線性淺水波方程(也稱(chēng)線性長(zhǎng)波方程).基于二元周期函數(shù)的傅里葉級(jí)數(shù)展開(kāi)理論,我們將周期變化的水深函數(shù)展開(kāi)成傅里葉級(jí)數(shù),同時(shí)也將所求的自由液面高程函數(shù)的周期性部分展開(kāi)成傅里葉級(jí)數(shù),系數(shù)待定.然后將它們雙雙代入控制方程,并對(duì)傅里葉級(jí)數(shù)的無(wú)限求和進(jìn)行有限截?cái)?將原本是求能帶結(jié)構(gòu)的問(wèn)題轉(zhuǎn)化為求矩陣特征值的問(wèn)題.最后,我們計(jì)算出了淺水波在按正方晶格和六角晶格兩種方式排列的無(wú)窮周期陣列上的能帶結(jié)構(gòu),并發(fā)現(xiàn)針對(duì)某些地形參數(shù),正立圓臺(tái)或倒立圓臺(tái)都可能形成相應(yīng)的完全頻隙,所謂完全頻隙是指在任何傳播方向,頻率落在此頻隙區(qū)間的波在相關(guān)周期地形上都是絕對(duì)禁止或無(wú)法存在.進(jìn)一步,我們分析討論了不同地形參數(shù)尤其是圓臺(tái)上下底面的填充率對(duì)頻隙寬度以及頻隙位置的影響.所得結(jié)果對(duì)近海工程中有限周期排列結(jié)構(gòu)物的建造和優(yōu)化具有理論性的參考價(jià)值.
[Abstract]:Since the 1990s, the energy band theory, which has been widely used in solid mechanics, has been extended to study the propagation of liquid surface waves on the periodic array structure of the seabed, and a lot of results have been obtained.Unfortunately, however, for more than two decades, almost all of the relevant studies have been confined to simple bottom structures with constant depths of segments or slices, such as two-dimensional rectangular step series and three-dimensional (effluent).Underwater or bottom drilling) vertical cylindrical arrays or vertical prism arrays, etc., but periodic arrays of infinite structures with variable water depth have almost never been studied. The reason is that in the case of varying water depth, the shallow water wave equation is used as the governing equation.It is necessary to solve the partial differential equation or ordinary differential equation with variable coefficients. If the Yehlet equation or the gentle slope equation is used, the wave number in the linear wave dispersion relation is an implicit function of the water depth function.Then it is necessary to solve partial differential equations or ordinary differential equations with implicit coefficients.In this dissertation, we study the band structure of linear shallow water waves across an infinite array of circular arrays arranged periodically on the seafloor.It is obvious that the water depth above the platform is continuously varying, which is rarely involved in the previous researches on the energy band structure of liquid surface waves.Because the linear shallow water wave is considered in this paper, the governing equation is linear shallow water wave equation (also called linear long wave equation).Based on the Fourier series expansion theory of binary periodic function, we expand the periodically varying water depth function into Fourier series, and at the same time, we expand the periodic part of the free liquid level elevation function into Fourier series, and the coefficients are to be determined.Then they are replaced into the governing equation and the infinite sum of Fourier series is truncated finitely. The problem of finding energy band structure is transformed into the problem of finding the eigenvalue of matrix.Finally, we calculate the energy band structure of shallow water waves on infinite periodic arrays arranged in square lattice and hexagonal lattice, and find that for some terrain parameters, both orthotropic and inverted stations may form a corresponding complete frequency gap.The so-called complete frequency gap means that the wave falling in the frequency interval in any direction of propagation is absolutely forbidden or unable to exist on the related periodic terrain.Furthermore, the influence of different topographic parameters, especially the filling ratio of the bottom surface of the platform, on the frequency gap width and the frequency slot position is analyzed and discussed.The obtained results are of theoretical reference value for the construction and optimization of finite periodic structures in offshore engineering.
【學(xué)位授予單位】:廣西民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:P751;O481.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前3條

1 鐘蘭花;吳福根;鐘會(huì)林;;Effects of orientation and shape of holes on the band gaps in water waves over periodically drilled bottoms[J];Chinese Physics B;2010年02期

2 鐘蘭花;吳福根;;水波在周期性鉆孔底部結(jié)構(gòu)中的傳播及其能帶[J];物理學(xué)報(bào);2009年09期

3 許泰文,張憲國(guó),蔡立宏;Bragg Reflection of Waves by Different Shapes of Artificial Bars[J];China Ocean Engineering;2002年03期



本文編號(hào):1711168

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/haiyang/1711168.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)84753***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
午夜精品福利视频观看| 国产一级精品色特级色国产| 亚洲最大的中文字幕在线视频| 视频一区二区三区自拍偷| 国产精品久久女同磨豆腐| 欧美一区二区三区在线播放| 国产免费成人激情视频| 亚洲欧美黑人一区二区| 国产亚洲视频香蕉一区| 日韩成人中文字幕在线一区| 91日韩欧美在线视频| 日本一本在线免费福利| 操白丝女孩在线观看免费高清| 亚洲永久一区二区三区在线| 午夜福利视频日本一区| 亚洲欧美日韩国产自拍| 中文字幕中文字幕在线十八区| 亚洲欧美日韩综合在线成成| 久久大香蕉精品在线观看| 久久永久免费一区二区| 麻豆蜜桃星空传媒在线观看| 91欧美一区二区三区| 好吊日在线观看免费视频| 中文字幕人妻一区二区免费| 太香蕉久久国产精品视频| 亚洲精品日韩欧美精品| 亚洲熟女诱惑一区二区| 亚洲中文字幕在线视频频道| 中文字幕乱子论一区二区三区| 在线观看中文字幕91| 九九热这里只有精品哦| 激情爱爱一区二区三区| 在线播放欧美精品一区| 久一视频这里只有精品| 欧美黑人在线一区二区| 亚洲伦片免费偷拍一区| 日韩精品一级一区二区| 色婷婷视频在线精品免费观看| 日韩精品一区二区三区四区| 精品一区二区三区乱码中文| 天海翼高清二区三区在线|