晚更新世以來(lái)黃河三角洲的沉積相劃分及環(huán)境演化研究
本文關(guān)鍵詞: 黃河三角洲 晚更新世 沉積相 環(huán)境演化 出處:《中國(guó)海洋大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:三角洲位于海陸交互地帶,對(duì)氣候、海平面波動(dòng)等變化較為敏感。大量第四紀(jì)沉積學(xué)研究表明,沉積記錄中保存著其形成時(shí)期的氣候和環(huán)境信息。對(duì)黃河三角洲沉積相和沉積環(huán)境的判別和信息提取,是理解三角洲沉積演化過(guò)程的重要前提,揭示了三角洲演化過(guò)程對(duì)環(huán)境變化的響應(yīng),同時(shí)為三角洲地區(qū)的開(kāi)發(fā)利用以及區(qū)域可持續(xù)發(fā)展提供科學(xué)依據(jù)。 本文依托項(xiàng)目《我國(guó)典型海岸帶系統(tǒng)對(duì)氣候變化的響應(yīng)機(jī)制及脆弱性評(píng)估研究》子課題《氣候變化影響下典型海岸沖淤過(guò)程及演變趨勢(shì)》,選取位于現(xiàn)行黃河流路與1996年以前現(xiàn)行黃河故道之間潮間帶的QSG孔為重點(diǎn)研究對(duì)象,利用巖性描述、粒度分析、體積磁化率分析、元素地球化學(xué)特征分析、有孔蟲(chóng)分析以及AMS14C測(cè)年等綜合分析,對(duì)QSG孔進(jìn)行了沉積相劃分,從中識(shí)別出河湖相、潮坪及濱岸沼澤相、淺海相、現(xiàn)代黃河三角洲沉積相,并結(jié)合三角洲地區(qū)其他鉆孔資料綜合分析黃河三角洲地區(qū)的環(huán)境演化過(guò)程,為黃河三角洲的環(huán)境演化補(bǔ)充了資料。 晚更新世以來(lái)黃河三角洲地區(qū)QSG孔位置可劃分為從上至下六個(gè)沉積相:第一沉積相:1.8-3.3m三角洲平原相;第二沉積相:3.3-8.92m三角洲前緣相;第三沉積相:8.92-17.92m前三角洲相;第四沉積相:17.92-20.49m淺海相;第五沉積相:20.49-24.22m潮坪及沼澤相;第六沉積相:24.22-32.10m河湖相。 本區(qū)環(huán)境演化分為四個(gè)階段: 第一階段(24.22-32.10m):反映了末次盛冰期末期低海面時(shí)期,海平面達(dá)到最低,本區(qū)發(fā)育河流和湖泊沉積。隨后,氣溫升高,海平面上升,在全新世海侵剛開(kāi)始時(shí),本區(qū)的河流和湖泊作用仍然為主要作用,為干旱的氧化環(huán)境。 第二階段(20.49-24.22m):本階段為冰后期海侵沉積,全新世海侵過(guò)程開(kāi)始,海平面上升,海水逐漸侵入濱海平原地區(qū),本區(qū)發(fā)育潮坪和濱岸沼澤沉積,沉積環(huán)境復(fù)雜。 第三階段(17.92m-20.49m):為高海面時(shí)期,距今7000年左右,隨著海面的持續(xù)上升,該地區(qū)逐漸被海水淹沒(méi),呈淺海環(huán)境。距今約6000年海平面達(dá)到最高,且海平面上升速率下降,保持穩(wěn)定。其間本區(qū)的海水水深加大,且同時(shí)還原程度增強(qiáng),本區(qū)為陸架淺海環(huán)境。 第四階段(1.8-17.92m):為高海面穩(wěn)定時(shí)期,對(duì)應(yīng)1855年以來(lái)形成的現(xiàn)代黃河三角洲沉積物,海平面基本保持穩(wěn)定,黃河改道后帶來(lái)大量泥沙在河口外堆積,形成水下三角洲,先后發(fā)育前三角洲沉積,三角洲前緣沉積,黃河三角洲平原沉積環(huán)境,顯示為氧化—還原環(huán)境交替。 研究結(jié)果表明晚更新世晚期以來(lái)黃河三角洲的環(huán)境演化對(duì)海平面的變化有所響應(yīng)。結(jié)合本區(qū)已有的鉆孔研究結(jié)果,基本形成了黃河三角洲由陸向海發(fā)育演化的連續(xù)系列,,為研究該區(qū)域海平面變化和環(huán)境演化提供了重要的參考。
[Abstract]:The delta is located in the sea and land interaction zone and is sensitive to the changes of climate and sea level fluctuation. A large number of Quaternary sedimentology studies show that. The climatic and environmental information of the formation period is preserved in the sedimentary records. The identification and extraction of the sedimentary facies and sedimentary environment of the Yellow River Delta is an important prerequisite for understanding the evolution process of the delta sediments. It also reveals the response of delta evolution to environmental change and provides scientific basis for the development and utilization of delta and regional sustainable development. This paper relies on the project "response Mechanism and vulnerability Assessment of typical Coastal Zone system to Climate change in China" sub-topic "scour and deposition process and evolution trend of typical coastal zone under the influence of climate change". The QSG hole in the intertidal zone between the current Yellow River flow road and the existing Yellow River old road before 1996 is selected as the key research object, and the lithologic description, particle size analysis and volumetric susceptibility analysis are used. Element geochemical characteristics, foraminifera analysis and AMS14C dating were used to classify the sedimentary facies of the QSG pore, from which the river and lake facies, tidal flat and shoreline marsh facies and shallow marine facies were identified. The sedimentary facies of the modern Yellow River Delta, combined with other borehole data in the delta area, comprehensively analyze the environmental evolution process in the Yellow River Delta region, which provides additional data for the environmental evolution of the Yellow River Delta region. Since the late Pleistocene, the QSG pore location in the Yellow River Delta can be divided into six sedimentary facies from the upper to the lower: the first sedimentary facies: the first sedimentary facies: 1. 8-3.3 m delta plain facies; The second sedimentary facies is the front facies of delta of 3.3-8.92m; The third sedimentary facies: the delta facies before 8.92-17.92m; 4th sedimentary facies: shallow sea facies: 17.92-20.49m; 5th sedimentary facies: 20.49-24.22m tidal flat and marsh facies; 6th sedimentary facies: 24.22-32.10m fluvial and lacustrine facies. The environmental evolution of this area is divided into four stages: The first stage (24.22-32.10 m) reflects the low sea level at the end of the last glacial maximum, the lowest sea level and the development of river and lake deposits in this area. Then, the temperature rises and the sea level rises. At the beginning of the Holocene transgression, the rivers and lakes in this area still play a major role in the arid oxidation environment. The second stage is 20. 49-24. 22mN: this stage is post-glacial transgression deposition. The transgression process began in Holocene, sea level rose and seawater gradually invaded coastal plain area. The tidal flat and shoreline marsh deposits are developed in this area, and the sedimentary environment is complex. The third stage is 17.92m-20.49m: it is a period of high sea level, about 7000, with the rising of sea surface, the area is gradually submerged by sea water. The sea level reached the highest in 6000, and the rising rate of sea level decreased steadily. Meanwhile, the depth of sea water in this area increased and the degree of reduction increased at the same time. This area is continental shelf shallow sea environment. Stage 4th is 1.8-17.92m: high sea level stabilization period, corresponding to the modern Yellow River delta sediments formed since 1855, the sea level is basically stable. After the diversion of the Yellow River, a large amount of sediment accumulates outside the estuary, forming the underwater delta, successively developing the pre-delta deposition, the delta front sedimentation, and the Yellow River delta plain sedimentary environment. Shown as an alternate oxidation-reduction environment. The results show that the environmental evolution of the Yellow River Delta since the late Pleistocene is responsive to the sea level change. A series of continuous evolution of the Yellow River Delta from the continental to the sea has been formed, which provides an important reference for the study of the sea level change and environmental evolution in the region.
【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:P736.21;P343.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王愛(ài)華;不同形態(tài)鍶鋇比的沉積環(huán)境判別效果比較[J];沉積學(xué)報(bào);1996年04期
2 劉東生;黃土與環(huán)境[J];科技和產(chǎn)業(yè);2002年11期
3 舒軍武;王偉銘;陳曄;;太湖平原西北部全新世古河道沉積特征及環(huán)境演變[J];地層學(xué)雜志;2008年02期
4 時(shí)連強(qiáng);李九發(fā);張衛(wèi)國(guó);陳沈良;;黃河三角洲飛雁灘HF孔沉積物的磁性特征及其環(huán)境意義[J];海洋學(xué)研究;2007年04期
5 王靖泰,汪品先;中國(guó)東部晚更新世以來(lái)海面升降與氣候變化的關(guān)系[J];地理學(xué)報(bào);1980年04期
6 王建,劉澤純,姜文英,董齡祥,朱明哲,高豐;磁化率與粒度、礦物的關(guān)系及其古環(huán)境意義[J];地理學(xué)報(bào);1996年02期
7 李元芳,何希賢;渤海灣北岸表層沉積中的有孔蟲(chóng)群及其生態(tài)環(huán)境[J];地理研究;1983年01期
8 劉青松;鄧成龍;;磁化率及其環(huán)境意義[J];地球物理學(xué)報(bào);2009年04期
9 楊華庭;中國(guó)沿岸海平面上升與海岸災(zāi)害[J];第四紀(jì)研究;1999年05期
10 楊z齪
本文編號(hào):1457940
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1457940.html