A Study of Typomorphism of Placer Gold in North Pakistan:Imp
發(fā)布時(shí)間:2022-02-19 06:59
巴基斯坦北部具有復(fù)雜的區(qū)域成礦地質(zhì)構(gòu)造背景,區(qū)內(nèi)發(fā)育許多不同種類、不同規(guī)模的金屬礦床,比如島弧-弧后淺成低溫?zé)嵋航饘俚V床、島弧Cu-(Mo)-(Au)斑巖型礦床、塊狀硫化物黑鎢礦床、矽卡巖型礦床、SEDEX Pb-Zn礦床、Ni-Co-Cu硫化物礦床、造山型金礦床和PGE。但受喜馬拉雅山脈崎嶇的冰川地形的影響,該區(qū)域內(nèi)的熱液型金礦床均未被開(kāi)發(fā),礦產(chǎn)開(kāi)采還僅僅局限于砂金礦床,且這些砂金礦床的源區(qū)也一直沒(méi)有定論。利用掃描電鏡、電子探針和元素面掃等方法對(duì)金礦物微形貌、主微量元素進(jìn)行了研究。為了查明黃鐵礦礦物屬性,進(jìn)行了XRD、熱電性測(cè)試、主微量元素測(cè)試、電子探針和元素面掃描、同位素分析等。通過(guò)以上實(shí)驗(yàn),討論了巴基斯坦北部砂礦床的成因、黃鐵礦中金的富集機(jī)制、成礦流體來(lái)源、母巖源區(qū)、礦床的剝蝕率等。利用LAICP-MS測(cè)定了碎屑鋯石U-Pb同位素組成和年齡,討論金礦形成時(shí)代,并通過(guò)鋯石中的微量元素對(duì)Bagrote、Shimshal和Dainter地區(qū)的潛在成礦巖石和不具成礦潛力的巖石進(jìn)行判別。巴基斯坦北部砂金顆粒形貌特征各異,呈不規(guī)則形態(tài)到次圓-圓形。Bagrote和Dainter兩個(gè)地區(qū)的砂金...
【文章來(lái)源】:中國(guó)地質(zhì)大學(xué)(北京)北京市211工程院校教育部直屬院校
【文章頁(yè)數(shù)】:234 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
Abstract
摘要
Chapter 1 Introduction
1.1 Project preface and rationality
1.2 Previous research
1.3 Objectives
1.4 Selection of Study area
1.4.1 Location selected
1.4.2 Accessibility
1.4.3 Climate and Topography
1.5 Summary of the work fulfilled
Chapter 2 Geological setting and metallogeny of North Pakistan
2.1. Tectonic evolution
2.2 Geological setting
2.2.1 Karakorum terrain (Asia)
2.2.1.1 The Northern Karakoram terrane
2.2.1.2 Karakoram Batholith
2.2.1.3 The Southern Metamorphic Complex (KMC)
2.2.2 Karakoram-Kohistan Suture Zone (KKSZ/MKT)
2.2.3 Kohistan Paleo Island Arc
2.2.3.1 Yasin Group (Volcanics and sediments)
2.2.3.2 Chalt Volcanics
2.2.3.3 Drosh sediments and Volcanics
2.2.3.4 The Shamran/Teru volcanics
2.2.3.5 Dir Group
2.2.3.6 The Jaglot Group
2.2.3.7 Kohistan batholith
2.2.3.8 The Chilas Complex
2.2.3.9 Kamila amphibolites
2.2.3.10 Jijal, Sapat and Tora-Tiga complexes
2.2.4 Indus Suture Zone
2.2.5 Indian Terrain Rocks
2.2.6 Metallogeny of North Pakistan
2.2.7 Glacial system
Chapter 3 Morphology and geochemistry of placer gold: implication forprovenance and exploration
3.1 Introduction
3.2 Sampling and Analytical methods
3.3 Results
3.3.1 Gold grain morphology
3.3.1.1 Shapes and size of gold grains
3.3.1.2 Microtexture of gold grains
3.3.2 Gold grain chemistry
3.3.2.1 EDS results
3.3.2.2 EMPA Data
3.3.2.3 Mineral Inclusions
3.4 Discussion
3.4.1 Morphology as indicator of proximity to gold source
3.4.2 Microchemistry and gold source type
3.4.3 Authigenic gold
3.5 Summary
Chapter 4 Morphological, thermoelectrical, geochemical and isotopicanatomy of auriferous pyrite
4.1 Introduction
4.2 Sampling and analytical techniques
4.2.1 Powder XRD analysis
4.2.2 Thermoelectricity analysis
4.2.3 EPMA Analysis and EPMA X-Ray elemental maps
4.2.4 Sulfur and lead Isotope analysis
4.3 Results
4.3.1 Morphology of pyrite
4.3.1.1 Crystal habit
4.3.2 Thermoelectricity
4.3.2.1 Thermoelectric theory
4.3.2.2 Thermoelectric analysis of pyrite
4.3.2.3 Temperature calculation using thermoelectric coefficient
4.3.2.4Thermoelectric parameter of pyrite
4.3.3 Pyrite Chemistry
4.3.3.1 Major and trace elements of pyrite
4.3.3.2 Element distribution in pyrite
4.3.4 Isotopic composition of pyrite
4.3.4.1 Sulfur isotopic composition of pyrite
4.3.4.2 Lead isotopic characteristics of pyrite
4.4 Discussion
4.4.1 Deposit types inferred in the hinterlands
4.4.2 Mineralisation and source lithology
4.4.3 Au incorporation in Pyrite
4.4.4 Ore forming fluids and source of metals and sulfur
4.5 Summary
Chapter 5 U-Pb geochronology, texture and composition of detrital zirconfrom placer deposits as a Pathfinder for source deposits
5.1 Introduction
5.2 Sampling and Analytical techniques
5.2.1 Zircon cathodoluminescencent (CL) images
5.2.2 LA-ICPMS zircon U-Pb geochronology and trace element analysis
5.3 Results
5.4 Discussion
5.4.1 Zircon fertility indicators
5.4.2 Zircon trace element proxy for magmatic water content
5.4.3 REE patterns of detrital zircon as fertility indicators
5.4.4 Detrital Zircon Textures as fertility indicator
5.4.5 Comparison of the fertile age suits with local geology
5.5 Summary
Chapter 6 Conclusions and recommendations
6.1 Conclusions
6.2 Recommendations for future work
References
Appendix
Resume
【參考文獻(xiàn)】:
期刊論文
[1]Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits[J]. David I.Groves,M.Santosh,Richard J.Goldfarb,Liang Zhang. Geoscience Frontiers. 2018(04)
[2]Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China[J]. Yutong Yan,Na Zhang,Shengrong Li,Yongsheng Li. Geoscience Frontiers. 2014(02)
[3]玲瓏金礦黃鐵礦標(biāo)型特征及其大縱深變化規(guī)律與找礦意義[J]. 申俊峰,李勝榮,馬廣鋼,劉艷,于洪軍,劉海明. 地學(xué)前緣. 2013(03)
[4]膠東各類型金礦床黃鐵礦化學(xué)成分標(biāo)型特征[J]. 嚴(yán)育通,張娜,李勝榮,李永生. 地學(xué)前緣. 2013(03)
[5]河北省靈壽縣西石門金礦黃鐵礦熱電性標(biāo)型及其找礦意義[J]. 李青,李勝榮,張秀寶,張林杰,趙毅,趙夫旺,劉洋. 地質(zhì)學(xué)報(bào). 2013(04)
[6]中國(guó)不同成因類型金礦床的黃鐵礦成分標(biāo)型特征及統(tǒng)計(jì)分析[J]. 嚴(yán)育通,李勝榮,賈寶劍,張娜,閆麗娜. 地學(xué)前緣. 2012(04)
[7]膠東金青頂金礦床黃鐵礦熱電性標(biāo)型特征及其地質(zhì)意義[J]. 陳海燕,李勝榮,張秀寶,周起鳳,張運(yùn)強(qiáng),劉振豪,張海芳,王寧. 礦床地質(zhì). 2010(06)
[8]西藏岡底斯斑巖銅礦帶埃達(dá)克質(zhì)斑巖含礦性:源巖相變及深部過(guò)程約束[J]. 侯增謙,孟祥金,曲曉明,高永豐. 礦床地質(zhì). 2005(02)
[9]黃鐵礦的微量元素及熱電性和晶體形態(tài)分析[J]. 胡楚雁. 現(xiàn)代地質(zhì). 2001(02)
[10]黃鐵礦熱電性研究方法及其在膠東金礦的應(yīng)用[J]. 邵偉,陳光遠(yuǎn),孫岱生. 現(xiàn)代地質(zhì). 1990(01)
本文編號(hào):3632450
【文章來(lái)源】:中國(guó)地質(zhì)大學(xué)(北京)北京市211工程院校教育部直屬院校
【文章頁(yè)數(shù)】:234 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
Abstract
摘要
Chapter 1 Introduction
1.1 Project preface and rationality
1.2 Previous research
1.3 Objectives
1.4 Selection of Study area
1.4.1 Location selected
1.4.2 Accessibility
1.4.3 Climate and Topography
1.5 Summary of the work fulfilled
Chapter 2 Geological setting and metallogeny of North Pakistan
2.1. Tectonic evolution
2.2 Geological setting
2.2.1 Karakorum terrain (Asia)
2.2.1.1 The Northern Karakoram terrane
2.2.1.2 Karakoram Batholith
2.2.1.3 The Southern Metamorphic Complex (KMC)
2.2.2 Karakoram-Kohistan Suture Zone (KKSZ/MKT)
2.2.3 Kohistan Paleo Island Arc
2.2.3.1 Yasin Group (Volcanics and sediments)
2.2.3.2 Chalt Volcanics
2.2.3.3 Drosh sediments and Volcanics
2.2.3.4 The Shamran/Teru volcanics
2.2.3.5 Dir Group
2.2.3.6 The Jaglot Group
2.2.3.7 Kohistan batholith
2.2.3.8 The Chilas Complex
2.2.3.9 Kamila amphibolites
2.2.3.10 Jijal, Sapat and Tora-Tiga complexes
2.2.4 Indus Suture Zone
2.2.5 Indian Terrain Rocks
2.2.6 Metallogeny of North Pakistan
2.2.7 Glacial system
Chapter 3 Morphology and geochemistry of placer gold: implication forprovenance and exploration
3.1 Introduction
3.2 Sampling and Analytical methods
3.3 Results
3.3.1 Gold grain morphology
3.3.1.1 Shapes and size of gold grains
3.3.1.2 Microtexture of gold grains
3.3.2 Gold grain chemistry
3.3.2.1 EDS results
3.3.2.2 EMPA Data
3.3.2.3 Mineral Inclusions
3.4 Discussion
3.4.1 Morphology as indicator of proximity to gold source
3.4.2 Microchemistry and gold source type
3.4.3 Authigenic gold
3.5 Summary
Chapter 4 Morphological, thermoelectrical, geochemical and isotopicanatomy of auriferous pyrite
4.1 Introduction
4.2 Sampling and analytical techniques
4.2.1 Powder XRD analysis
4.2.2 Thermoelectricity analysis
4.2.3 EPMA Analysis and EPMA X-Ray elemental maps
4.2.4 Sulfur and lead Isotope analysis
4.3 Results
4.3.1 Morphology of pyrite
4.3.1.1 Crystal habit
4.3.2 Thermoelectricity
4.3.2.1 Thermoelectric theory
4.3.2.2 Thermoelectric analysis of pyrite
4.3.2.3 Temperature calculation using thermoelectric coefficient
4.3.2.4Thermoelectric parameter of pyrite
4.3.3 Pyrite Chemistry
4.3.3.1 Major and trace elements of pyrite
4.3.3.2 Element distribution in pyrite
4.3.4 Isotopic composition of pyrite
4.3.4.1 Sulfur isotopic composition of pyrite
4.3.4.2 Lead isotopic characteristics of pyrite
4.4 Discussion
4.4.1 Deposit types inferred in the hinterlands
4.4.2 Mineralisation and source lithology
4.4.3 Au incorporation in Pyrite
4.4.4 Ore forming fluids and source of metals and sulfur
4.5 Summary
Chapter 5 U-Pb geochronology, texture and composition of detrital zirconfrom placer deposits as a Pathfinder for source deposits
5.1 Introduction
5.2 Sampling and Analytical techniques
5.2.1 Zircon cathodoluminescencent (CL) images
5.2.2 LA-ICPMS zircon U-Pb geochronology and trace element analysis
5.3 Results
5.4 Discussion
5.4.1 Zircon fertility indicators
5.4.2 Zircon trace element proxy for magmatic water content
5.4.3 REE patterns of detrital zircon as fertility indicators
5.4.4 Detrital Zircon Textures as fertility indicator
5.4.5 Comparison of the fertile age suits with local geology
5.5 Summary
Chapter 6 Conclusions and recommendations
6.1 Conclusions
6.2 Recommendations for future work
References
Appendix
Resume
【參考文獻(xiàn)】:
期刊論文
[1]Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits[J]. David I.Groves,M.Santosh,Richard J.Goldfarb,Liang Zhang. Geoscience Frontiers. 2018(04)
[2]Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China[J]. Yutong Yan,Na Zhang,Shengrong Li,Yongsheng Li. Geoscience Frontiers. 2014(02)
[3]玲瓏金礦黃鐵礦標(biāo)型特征及其大縱深變化規(guī)律與找礦意義[J]. 申俊峰,李勝榮,馬廣鋼,劉艷,于洪軍,劉海明. 地學(xué)前緣. 2013(03)
[4]膠東各類型金礦床黃鐵礦化學(xué)成分標(biāo)型特征[J]. 嚴(yán)育通,張娜,李勝榮,李永生. 地學(xué)前緣. 2013(03)
[5]河北省靈壽縣西石門金礦黃鐵礦熱電性標(biāo)型及其找礦意義[J]. 李青,李勝榮,張秀寶,張林杰,趙毅,趙夫旺,劉洋. 地質(zhì)學(xué)報(bào). 2013(04)
[6]中國(guó)不同成因類型金礦床的黃鐵礦成分標(biāo)型特征及統(tǒng)計(jì)分析[J]. 嚴(yán)育通,李勝榮,賈寶劍,張娜,閆麗娜. 地學(xué)前緣. 2012(04)
[7]膠東金青頂金礦床黃鐵礦熱電性標(biāo)型特征及其地質(zhì)意義[J]. 陳海燕,李勝榮,張秀寶,周起鳳,張運(yùn)強(qiáng),劉振豪,張海芳,王寧. 礦床地質(zhì). 2010(06)
[8]西藏岡底斯斑巖銅礦帶埃達(dá)克質(zhì)斑巖含礦性:源巖相變及深部過(guò)程約束[J]. 侯增謙,孟祥金,曲曉明,高永豐. 礦床地質(zhì). 2005(02)
[9]黃鐵礦的微量元素及熱電性和晶體形態(tài)分析[J]. 胡楚雁. 現(xiàn)代地質(zhì). 2001(02)
[10]黃鐵礦熱電性研究方法及其在膠東金礦的應(yīng)用[J]. 邵偉,陳光遠(yuǎn),孫岱生. 現(xiàn)代地質(zhì). 1990(01)
本文編號(hào):3632450
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/3632450.html
最近更新
教材專著