西秦嶺天水地區(qū)車河花崗巖研究
[Abstract]:The study area is located at the western end of the North Qinling orogenic belt and is an important combination site between the North Qinling orogenic belt and the Qilian orogenic belt. The Chehe rock body is a set of porphyry-like granites occurring in the early Paleozoic Cao-Chuan-Pu rocks in Tianshui area. A small number of dark particulate inclusions are developed in the rocks, which is one of the important signs of crust-mantle mixing. However, the previous studies on the mixing mechanism of crust and mantle magma and the origin of dark particle inclusions are lacking. Based on the field geological investigation, lithofacies, petrology, laboratory petrology and geochemical analysis of trace elements of the Che rock mass, and combining with zircon U-Pb dating technique, the formation age and genesis of the Chehe rock mass are studied and discussed in this paper. The main research results of the tectonic environment and its geological significance are as follows: 1. The SHRIMP U-Pb zircon age test results of the host granite of the Chehe pluton show that, The weighted average age of magmatic zircons in host rocks is (210.9 鹵1. 7) Ma (MSWD=1.74). Therefore, the crystalline age of the porphyry-like granite is late Triassic, and it is an early Mesozoic Indosinian granite. The Caochuanpu rock mass is not a simple complex rock mass formed at the same time, but a composite rock mass formed by multi-stage granite. 2. The Chehe granite minerals are composed of amphibole and atracite, without aluminite-rich minerals such as garnet and dolomite. The content of SiO2 is high (72.57%), the content of K _ 2O / Na _ 2O 1.35 ~ 1.47% K2O is higher (8.02% -8.6%), the content of Al2O3 (13.57%) is 13.91%, A / N _ K _ (0.99-1.07), quasi-aluminum-weakly peraluminous granites, the content of SiO2 is higher (74.13%), the content of K _ 2O is higher (8.02% -8.6%). 10000Ga/Al ranged from 2.05-3.97; In terms of trace elements, Chehe granite has the characteristics of A-type granite which is poor in Ba,Ti,P and Sr, but the content of Sr is higher than that of typical A-type granite, and the negative europium in its REE distribution is very weak, a few of them can be positive anomaly, so the content of Sr is higher than that of typical type A granite. The Chehe granite has A-type granite characteristics, but it also shows some I-type granite characteristics, but it is different from the two. 3, a small number of dark particulate inclusions have been developed in the Chehe granite body, and the inclusion forms are different. There are acicular apatite and quartz porphyry encased by dark particle minerals. The trace element Nb-Ta,Zr-Hf distributes as a trough, which is an important evidence of magmatic mixing. Studies on a small amount of high Na clinopyroxene inclusions developed in dark particle inclusions show that the formation of dark particle inclusions can be summarized into two stages. The first stage is the early differentiation stage of pyroxene and other minerals: the mixture of high temperature basic magma and lower temperature acidic magma results in rapid crystallization differentiation of mixed high temperature basic magma. The partial base mineral assemblage represented by clinopyroxene began to crystallize at this stage. The second stage is the dark particle inclusion crystallization stage: after the magmatic mixed crystallization differentiation, the residual metabase invaded with the acid magma, and the monoclinopyroxene, which began to crystallize, invaded along with the partial basic magma. Since then, the partial basic magma crystallized rapidly at some point, resulting in clinopyroxene encased by amphibole and other minerals. 5. The study of high Na monoclinopyroxene shows that the mixing depth of crust-mantle magma should be at least below the surface 69km. This thickness represents the lowest crustal thickness in the study area during the late Triassic period, indicating that the study area experienced collision orogeny during the late Triassic, and that the continental crust thickness is the same as the crust thickness of the Himalayas. 6. Based on the analysis of regional geological background and tectonic environment, it is concluded that the early Mesozoic Che granites were formed in the extensional and extensional environment during the post-collision period.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P588.121
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 廖忠禮,莫宣學(xué),潘桂棠,朱弟成,趙志丹,王立全,江新勝;西藏過鋁花崗巖研究近況[J];地學(xué)前緣;2003年04期
2 王德滋;華南花崗巖研究的回顧與展望[J];高校地質(zhì)學(xué)報(bào);2004年03期
3 洪大衛(wèi);王濤;童英;;中國花崗巖概述[J];地質(zhì)論評(píng);2007年S1期
4 張旗;潘國強(qiáng);李承東;金惟俊;賈秀勤;;21世紀(jì)的花崗巖研究,路在何方?——關(guān)于花崗巖研究的思考之六[J];巖石學(xué)報(bào);2008年10期
5 邵其東;錢元明;吳登晨;;花崗巖研究的基本思路及對(duì)一些問題的認(rèn)識(shí)[J];西部探礦工程;2012年10期
6 王寵;;關(guān)于福建后侏羅紀(jì)的兩種花崗巖相的簡(jiǎn)介[J];地質(zhì)學(xué)報(bào);1956年01期
7 Л.В.Таусон ,田華振;花崗巖類的地球化學(xué)類型[J];地質(zhì)地球化學(xué);1975年01期
8 張之平;;陜西秦嶺地槽區(qū)花崗巖成因及成礦問題淺見[J];西北地質(zhì);1978年05期
9 S.Suensilpong;P.Putthapiban;N.Mantagit;王志泰;;含錫花崗巖的某些特征及其與構(gòu)造條件的關(guān)系[J];云南地質(zhì);1982年02期
10 ;陜西省花崗巖類研究成果評(píng)審驗(yàn)收[J];陜西地質(zhì);1983年01期
相關(guān)會(huì)議論文 前10條
1 張旗;潘國強(qiáng);李承東;金惟俊;賈秀勤;;21世紀(jì)的花崗巖研究,路在何方?——關(guān)于花崗巖研究的思考之六[A];中國科學(xué)院地質(zhì)與地球物理研究所2008學(xué)術(shù)論文匯編[C];2009年
2 廖忠禮;莫宣學(xué);潘桂棠;朱弟成;王立全;趙志丹;江新勝;;西藏過鋁花崗巖的初步研究[A];青藏高原及鄰區(qū)地質(zhì)與資源環(huán)境學(xué)術(shù)討論會(huì)論文摘要匯編[C];2003年
3 聶鳳軍;裴榮富;吳良士;張洪濤;;內(nèi)蒙古中南部古陸邊緣花崗巖類及其演化[A];中國地質(zhì)科學(xué)院礦床地質(zhì)研究所文集(25)[C];1992年
4 權(quán)恒;;內(nèi)蒙古東部黃崗地區(qū)花崗巖類型及錫礦[A];中國地質(zhì)科學(xué)院沈陽地質(zhì)礦產(chǎn)研究所文集(6)[C];1983年
5 王玉太;史明魁;譚運(yùn)金;張傳榮;;南嶺地區(qū)含稀有金屬花崗巖的巖石、礦物、地球化學(xué)演化特點(diǎn)[A];中國地質(zhì)科學(xué)院宜昌地質(zhì)礦產(chǎn)研究所文集(1)[C];1980年
6 ;中國花崗巖類化學(xué)元素豐度(2008年出版專著)[A];2008年度中國地質(zhì)科技新進(jìn)展和地質(zhì)找礦新成果資料匯編[C];2008年
7 張旗;王元龍;金惟俊;賈秀勤;李承東;;造山前、造山和造山后花崗巖的識(shí)別[A];中國科學(xué)院地質(zhì)與地球物理研究所2008學(xué)術(shù)論文匯編[C];2009年
8 張旗;王焰;潘國強(qiáng);李承東;金惟俊;;花崗巖源巖問題——關(guān)于花崗巖研究的思考之四[A];中國科學(xué)院地質(zhì)與地球物理研究所2008學(xué)術(shù)論文匯編[C];2009年
9 楊樹鋒;陳漢林;陳芙蓉;竺國強(qiáng);姜繼雙;;不同成因類型花崗巖的磁性特征及地質(zhì)意義[A];1994年中國地球物理學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];1994年
10 楊樹鋒;陳漢林;姜繼雙;竺國強(qiáng);;高溫高壓下華南兩類花崗巖的波速特征及構(gòu)造意義[A];1996年中國地球物理學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];1996年
相關(guān)重要報(bào)紙文章 前2條
1 王殿華;袁奎榮把名字刻在花崗巖上的地質(zhì)學(xué)家[N];中國有色金屬報(bào);2001年
2 博雅;花崗巖類的成巖與成礦作用有本質(zhì)差別[N];地質(zhì)勘查導(dǎo)報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 王科強(qiáng);浙西地區(qū)中生代花崗巖類時(shí)空演化特征及其成礦作用[D];中國地質(zhì)大學(xué)(北京);2015年
2 施彬;東昆侖黑海地區(qū)加里東期過鋁質(zhì)花崗巖成因研究[D];中國地質(zhì)大學(xué);2014年
3 郭春麗;贛南崇義—上猶地區(qū)與成礦有關(guān)中生代花崗巖類的研究及對(duì)南嶺地區(qū)中生代成礦花崗巖的探討[D];中國地質(zhì)科學(xué)院;2010年
4 李永軍;花崗巖類地質(zhì)信息的采集與集成[D];長安大學(xué);2005年
5 龐振山;河南省西部地區(qū)中生代花崗巖類地質(zhì)特征及成因[D];中國地質(zhì)大學(xué)(北京);2006年
6 白憲洲;滇西龍陵地區(qū)花崗巖地質(zhì)地球化學(xué)研究及其成礦作用探討[D];成都理工大學(xué);2014年
7 李鵬春;湘東北地區(qū)顯生宙花崗巖巖漿作用及其演化規(guī)律[D];中國科學(xué)院研究生院(廣州地球化學(xué)研究所);2006年
8 吳鎖平;柴北緣古生代花崗巖類成因及其造山響應(yīng)[D];中國地質(zhì)科學(xué)院;2008年
9 張少兵;揚(yáng)子陸核古老地殼及其深熔產(chǎn)物花崗巖的地球化學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2008年
10 張青偉;華北板塊北緣中段晚古生代花崗巖類特征及其地質(zhì)意義[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 肖志才;滇西龍陵象達(dá)—平達(dá)地區(qū)中—新生代花崗巖地球化學(xué)特征及其構(gòu)造意義[D];昆明理工大學(xué);2015年
2 羅剛;贛西北花山洞鎢礦隱伏花崗巖地球化學(xué)特征及鋯石U-Pb定年分析[D];中國地質(zhì)大學(xué)(北京);2015年
3 安永龍;中祁連中段丹德爾巖體巖石地球化學(xué)特征、形成時(shí)代及大地構(gòu)造意義[D];中國地質(zhì)大學(xué)(北京);2015年
4 張隆隆;內(nèi)蒙古烏蘭德勒鉬銅多金屬礦區(qū)花崗巖類巖體時(shí)空演化[D];中國地質(zhì)大學(xué)(北京);2015年
5 劉躍;膠東早白堊世早期新城花崗巖成因及其成礦貢獻(xiàn)[D];中國地質(zhì)大學(xué)(北京);2015年
6 李世民;班公湖—怒江特提斯洋北向俯沖過程:西羌塘地塊晚侏羅世巖漿巖約束[D];中國地質(zhì)大學(xué)(北京);2015年
7 陳虹;內(nèi)蒙古阿拉善巴音諾爾公一帶二疊紀(jì)侵入巖地質(zhì)特征[D];中國地質(zhì)大學(xué)(北京);2015年
8 魏娟娟;北武夷龍頭崗—王塢銅多金屬礦田花崗巖類巖漿作用與成礦[D];中國地質(zhì)大學(xué)(北京);2015年
9 王U,
本文編號(hào):2430227
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2430227.html