利用灰度共生矩陣提取紋理屬性的研究以及沉積相劃分
[Abstract]:At present, 3D seismic attributes have been widely used in seismic interpretation, mainly in geological structure and geological interpretation, as well as lithology and pore fluid identification, reservoir characterization and so on. With the development of high speed digital electronic computer, the application computer can process and interpret the digital seismic record in a variety of ways. There are many kinds of seismic attributes, such as square root amplitude attribute, frequency attribute, coherent volume attribute, AVO attribute, wave impedance attribute and so on. At present, a large number of attributes are mainly used for reservoir prediction and reservoir characterization, which can identify lithology, fluid, fault and channel sand body, respectively. Therefore, 3D seismic attributes can help geophysical and geological engineers to make 3D visual interpretation, and improve the accuracy and efficiency of interpretation. This paper first summarizes the texture features, and introduces four methods of texture feature analysis from the point of view of texture analysis technology. Because of the uniqueness of seismic texture attributes compared with traditional seismic attributes, so in the seismic texture attribute analysis, The extraction of seismic texture attributes is particularly important. This paper briefly introduces three methods of texture extraction, emphasizes on the principle of attribute extraction based on gray level co-occurrence matrix, and explains its superiority over the other two methods. The traditional C1 algorithm is based on the statistical cross-correlation theory to calculate the coherence of seismic data along the line number and trace direction. Based on the theory of gray level co-occurrence matrix, a better coherence algorithm, seismic texture coherence attribute algorithm, is introduced. This algorithm not only takes into account the seismic coherent response characteristics along the direction of line number and trace sign, but also includes sum line number. The coherent information of the track in the angular direction makes full use of the coherence information of the seismic trace in the four directions. Moreover, the coherence between two or three adjacent channels considered by the traditional C1 algorithm can be extended to multi-channel coherence. The texture attribute parameters are also analyzed in this paper. Through the response of texture eigenvalues to different profiles under different parameters, the effect of different parameters on texture attribute resolution is discussed. In addition, the processing effect of 3D data volume shows that, Compared with the traditional C _ 1 and C _ 3 coherent algorithms, this method has higher lateral resolution and can effectively identify fault and channel boundaries. Finally, based on the structural sedimentary data, Huan 2 block is selected to study the seismic texture attributes of 4 sub-layers in the lower part of the second member of Shahejie formation, and good results have been obtained.
【學(xué)位授予單位】:長江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P631.4
【相似文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前4條
1 桑桑;郝鵬翼;丁友東;石蘊(yùn)玉;;基于紋理和輪廓的鉛筆素描畫生成方法[J];上海大學(xué)學(xué)報(自然科學(xué)版);2010年03期
2 覃家美;周瑞霞;廖孟揚(yáng);;用多分辨率圖象錐提取紋理方向性測度特征檢測紋理邊緣[J];武漢大學(xué)學(xué)報(自然科學(xué)版);1991年02期
3 何玨;趙鵬;李浩;;基于紋理的林區(qū)影像匹配窗口設(shè)置方法探討[J];遙感信息;2013年04期
4 ;[J];;年期
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 張軍;基于局部結(jié)構(gòu)分布的統(tǒng)計(jì)紋理表征方法研究[D];西安電子科技大學(xué);2014年
2 江巨浪;曲面紋理生成方法及實(shí)現(xiàn)的研究[D];合肥工業(yè)大學(xué);2006年
3 趙洋;基于局部描述子的紋理識別方法及其在葉片識別方面的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2013年
4 苗艷鳳;木材山峰狀紋理的視覺特性研究[D];南京林業(yè)大學(xué);2013年
5 朱為;基于紋理合成的數(shù)字圖像修補(bǔ)技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2010年
6 韓守東;紋理建模與圖切分優(yōu)化方法研究[D];華中科技大學(xué);2010年
7 錢文華;基于紋理的非真實(shí)感繪制技術(shù)研究[D];云南大學(xué);2010年
8 桂彥;可視媒體編輯與重用關(guān)鍵技術(shù)研究[D];上海交通大學(xué);2012年
9 普園媛;云南重彩畫藝術(shù)風(fēng)格的數(shù)字模擬及合成技術(shù)研究[D];云南大學(xué);2010年
10 張巖;紋理合成技術(shù)的研究及其應(yīng)用[D];吉林大學(xué);2006年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 呂秋麗;基于共生擴(kuò)展八鄰域矩陣的紋理識別方法[D];西安電子科技大學(xué);2014年
2 李明;基于實(shí)際測量的紋理力觸覺裝置及建模方案改進(jìn)研究[D];東南大學(xué);2015年
3 張正;基于織物表面紋理的疵點(diǎn)分割方法研究[D];西安工程大學(xué);2015年
4 潘翔;基于復(fù)用計(jì)算的肝臟軟組織體紋理合成方法研究[D];福州大學(xué);2014年
5 吳昊;利用灰度共生矩陣提取紋理屬性的研究以及沉積相劃分[D];長江大學(xué);2015年
6 陸華鋒;紋理合成算法的研究與應(yīng)用[D];合肥工業(yè)大學(xué);2009年
7 王元龍;紋理生成映射技術(shù)的研究及應(yīng)用[D];太原科技大學(xué);2010年
8 周航軍;紋理合成算法的研究與應(yīng)用[D];南京理工大學(xué);2004年
9 顏星;基于能量優(yōu)化的圖像與視頻紋理替換技術(shù)研究[D];北京理工大學(xué);2010年
10 劉利娟;紋理標(biāo)準(zhǔn)性度量及近似周期性紋理合成方法探討[D];西北工業(yè)大學(xué);2005年
,本文編號:2417324
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2417324.html