基于顆粒流的高含石量巨粒土填料剪切特性研究
[Abstract]:The foundation of the infrastructure construction project in the southwest part of the Southwest has formed a large number of filling projects. The filler used mainly consists of crushed stone and soil mixed by blasting in the excavation area, and often has high stone content (up to 60%), and the large-grain group of soil particles (with a mass percentage of more than 15%). The size of the stone is large (up to 1m), which is referred to as the high-stone-containing large-particle soil filler. The shear characteristic is one of the most important bases for evaluating the properties of the filler, and the related shear strength and shear deformation characteristics are highly valued by the engineering and technical personnel. In order to study the shear characteristics of the high-stone-containing giant soil filler, this paper, based on the four-period expansion project of the Chongqing Jiangbei International Airport, based on the Monte-Carlo method, uses the FISH language built-in of the PFC to carry out secondary development. The particle flow packing model based on the particle size component and the random polygonal block is constructed, and the effect of the size effect, the particle size of the giant particle and the stone content on the shear characteristics of the filler is studied. The research results are of great reference value to the construction of the hilly land in the mountainous area. The main contents and results of this paper are as follows: The particle size composition and apparent characteristic of the high-stone-containing giant-particle soil filler are obtained through the on-site investigation, in-room screening and digital image processing, and the analysis of the stone shape provides a statistical basis for the construction of the random polygonal block model. An indoor direct shear test is carried out on the collected samples, and the experimental results provide the key data of the micro-parameter and macro-parameter calibration for subsequent particle flow numerical simulation. Based on the Monte-Carlo method, a random sampling model for describing the shape of the stone is constructed, and the particle flow packing model based on the particle size component and the random polygonal block is constructed by the secondary development of the FISH language built in the PFC2D. and the accurate simulation of the particle size component and the irregular polygonal block of the filler is realized. The numerical model of the particle flow of the direct shear test is constructed, and the whole process of the direct shear test in the packing chamber is simulated, and the numerical simulation results of the particle flow basically reflect the shearing characteristics of the filler. By continuously monitoring and recording the position of the fracture in the model, the development of the shear plane with the shear displacement in the course of the direct shear test is obtained, and the morphological characteristics of the shear plane are also analyzed. In order to enlarge the research scale, the particle size of the soil-rock boundary is re-divided, and the minimum particle size of the model is changed accordingly, and the size effect of the high-stone-containing giant-particle soil filler is studied. The results show that, under the condition that the sample stage and the loading condition are all the same, the size of the model is increased, the peak value of the shear stress is reduced, the shear strain corresponding to the peak value of the shear stress is reduced, the shear expansion is gradually reduced, and the viscosity and the internal friction angle are also reduced. this change tends to be gentle as the size of the model is relatively large. The numerical model of soil particle distribution in different macro-particle groups was designed by using the mass substitution method and other mass substitution method to keep the content of the coarse and fine material unchanged. The results of the numerical simulation show that, with the larger diameter of the stone in the model, the particle size is small, the number of stones is replaced, and the cohesive force is gradually reduced, but the internal friction angle is increasing. In order to guide the practice of the project, the particle size of the stone shall be controlled in accordance with the relevant specifications in the filling construction, and the stone shall be decomposed for the stone with the particle size exceeding the specification. In order to maintain the loading condition and the relative proportion of each block group, the numerical model with the stone content of 10%, 30%, 40%, 50%, 60%, 70%, 80% and 90%, respectively, was designed. The results of the numerical simulation show that the higher the stone content, the higher the shear stress peak, the higher the shear stress-shear strain curve near the elastic section, the smaller the shear strain corresponding to the shear stress peak, and the shear expansion. the viscosity and the internal friction angle can be divided into three parts along with the change curve of the different rock-containing quantity: 1) when the stone-containing amount is 10-40%, the internal friction angle is gradually increased with the increase of the stone-containing amount, and the viscous-accumulation force is gradually reduced; and 2) when the stone-containing amount is 40-70%, the stone-containing amount is increased, When the cohesive force is increased to a certain extent, the internal friction angle is small; 3) When the stone content is 70-90%, the adhesion force is significantly reduced with the increase of the stone content, and the internal friction angle is obviously increased. According to the above conclusion, when the stone content is more than 70%, with the increase of the stone content, the adhesion and accumulation force of the filler is greatly reduced, and the compaction quality is difficult to be guaranteed, so that the filler with the stone content of more than 70% shall be avoided in the filling project.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU751.4;TU432
【相似文獻】
相關(guān)期刊論文 前10條
1 方玉樹;對顆粒流理論的一點認識[J];水文地質(zhì)工程地質(zhì);1990年01期
2 張端明,雷雅潔,張美軍,李智華;混合顆粒流分形模型及相關(guān)有效熱傳導(dǎo)的分析[J];華中科技大學(xué)學(xué)報;2001年12期
3 黃德財;孫剛;厚美瑛;陸坤權(quán);;顆粒速度在顆粒流稀疏流-密集流轉(zhuǎn)變中的作用[J];物理學(xué)報;2006年09期
4 葉堅;毛旭鋒;夏建新;;顆粒流研究最新進展與挑戰(zhàn)[J];中央民族大學(xué)學(xué)報(自然科學(xué)版);2009年04期
5 白若虛;程雪松;鄭剛;;關(guān)于土滲透系數(shù)顆粒流細觀參數(shù)研究[J];低溫建筑技術(shù);2012年01期
6 孟凡凈;劉q;王偉;;剪切平行板間密集顆粒流的接觸力分布及各向異性分析[J];應(yīng)用數(shù)學(xué)和力學(xué);2013年07期
7 羅勇;龔曉南;吳瑞潛;;樁墻結(jié)構(gòu)的顆粒流數(shù)值模擬研究[J];科技通報;2007年06期
8 朱涵成;韓文喜;陳超;;砂巖常規(guī)三軸的顆粒流數(shù)值模擬[J];地質(zhì)災(zāi)害與環(huán)境保護;2013年03期
9 周英,鮑德松,張訓(xùn)生,雷哲民,胡國琦,唐孝威;邊界條件對二維斜面顆粒流顆粒分布的影響[J];物理學(xué)報;2004年10期
10 周健,池永;土的工程力學(xué)性質(zhì)的顆粒流模擬[J];固體力學(xué)學(xué)報;2004年04期
相關(guān)會議論文 前10條
1 楊馥菱;張慰慈;陳俊杉;謝尚賢;;碰撞模型參數(shù)對滑道道高濃度干顆粒流發(fā)展之影響(英文)[A];第七屆海峽兩岸工程力學(xué)研討會論文摘要集[C];2011年
2 秦琦;王等明;;斜面顆粒流對圍墻沖擊作用的離散單元法模擬[A];中國力學(xué)大會——2013論文摘要集[C];2013年
3 孟云偉;柴賀軍;;顆粒流離散元在滑坡運動過程模擬中的應(yīng)用[A];第一屆中國水利水電巖土力學(xué)與工程學(xué)術(shù)討論會論文集(上冊)[C];2006年
4 楊果成;劉啟一;胡茂彬;姜銳;吳清松;;雙瓶頸斜槽上的顆粒流相變和雙穩(wěn)態(tài)[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 胡國琦;厚美瑛;杜其永;;密集態(tài)顆粒流的激波結(jié)構(gòu)[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
6 張家銘;任永強;;基于三維顆粒流理論的混合土體力學(xué)參數(shù)反演研究[A];顆粒材料計算力學(xué)研究進展[C];2012年
7 郭海慶;李志剛;;粒徑在顆粒流標定過程中對邊坡巖土體細觀參數(shù)的影響研究[A];中國計算力學(xué)大會'2010(CCCM2010)暨第八屆南方計算力學(xué)學(xué)術(shù)會議(SCCM8)論文集[C];2010年
8 孫其誠;王光謙;;斜面顆粒流的離散元模擬[A];中國科學(xué)技術(shù)協(xié)會2008防災(zāi)減災(zāi)論壇論文集[C];2008年
9 馬宗源;徐清清;黨發(fā)寧;;碎石土地基動力夯實的顆粒流離散元數(shù)值分析[A];第21屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅰ冊[C];2012年
10 郭海慶;李志剛;高莊平;;粒徑在顆粒流標定過程中對邊坡巖土體細觀參數(shù)的影響[A];巖石力學(xué)與工程的創(chuàng)新和實踐:第十一次全國巖石力學(xué)與工程學(xué)術(shù)大會論文集[C];2010年
相關(guān)博士學(xué)位論文 前5條
1 羅勇;土工問題的顆粒流數(shù)值模擬及應(yīng)用研究[D];浙江大學(xué);2007年
2 王偉;針對典型摩擦副的非流態(tài)化顆粒流潤滑特性研究[D];合肥工業(yè)大學(xué);2009年
3 曹文廣;稠密氣固兩相射流的實驗研究與數(shù)值模擬[D];華東理工大學(xué);2013年
4 曾遠;土體破壞細觀機理及顆粒流數(shù)值模擬[D];同濟大學(xué);2006年
5 邱成春;H-V 加筋路堤動力特性的試驗及顆粒流分析[D];上海大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 樊航;自由下落顆粒流卷吸空氣量及顆粒運動特性研究[D];西安建筑科技大學(xué);2015年
2 于凡;間質(zhì)流體對濕顆粒流化特性影響的研究[D];哈爾濱工業(yè)大學(xué);2015年
3 汪汝峰;深部人工凍結(jié)黏土加卸載顆粒流模擬研究[D];中國礦業(yè)大學(xué);2015年
4 王國呈;粘性顆粒在纖維體上沉積的數(shù)值模擬方法優(yōu)化[D];安徽工業(yè)大學(xué);2015年
5 王雷;基于顆粒流的高含石量巨粒土填料剪切特性研究[D];重慶大學(xué);2015年
6 王家軍;噴射顆粒流潤滑試驗研究及有限元仿真[D];合肥工業(yè)大學(xué);2009年
7 陳德文;錨固機理的模型試驗研究及其顆粒流數(shù)值模擬[D];山東大學(xué);2008年
8 王智勇;平行板顆粒流摩擦系統(tǒng)的力鏈構(gòu)型與演變研究[D];合肥工業(yè)大學(xué);2013年
9 廖靜薇;基于顆粒流強度折減法的粉質(zhì)粘土邊坡穩(wěn)定性分析[D];重慶大學(xué);2014年
10 陳宜楷;基于顆粒流離散元的尾礦庫壩體穩(wěn)定性分析[D];中南大學(xué);2012年
,本文編號:2386350
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2386350.html