天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 地質(zhì)論文 >

基于顆粒流的高含石量巨粒土填料剪切特性研究

發(fā)布時間:2018-12-18 19:01
【摘要】:西南地區(qū)基礎(chǔ)設(shè)施建設(shè)工程的蓬勃開展形成了眾多的填方工程,所用填料主要由挖方區(qū)爆破而來的碎石和土混合組成,往往具有含石量高(可達60%以上)、巨粒組土粒多(質(zhì)量百分比15%以上)、石塊粒徑大(最大可達1m)的特點,本文稱之為高含石量巨粒土填料。剪切特性作為評價填料工程性質(zhì)最為重要的依據(jù)之一,相關(guān)的抗剪強度指標及剪切變形特征受到工程技術(shù)人員的高度重視。為探究高含石量巨粒土填料的剪切特性,本文依托重慶江北國際機場四期擴建工程,以蒙特卡洛方法為理論基礎(chǔ),利用PFC內(nèi)置的FISH語言進行二次開發(fā),構(gòu)建了基于粒度成分及隨機多邊形石塊的顆粒流填料模型,研究了尺寸效應(yīng)、巨粒組土粒的粒徑及含石量對填料剪切特征的影響,研究成果對山區(qū)丘陵地帶的工程建設(shè)具有重要的參考價值。本文主要的研究內(nèi)容及成果如下:①通過現(xiàn)場槽探、室內(nèi)篩分與數(shù)字圖像處理獲得了高含石量巨粒土填料的粒度成分及表觀特征;石塊形態(tài)分析為構(gòu)建隨機多邊形石塊模型提供了統(tǒng)計依據(jù);對采集的試樣進行室內(nèi)直剪試驗,試驗結(jié)果為后續(xù)顆粒流數(shù)值模擬提供了微觀參數(shù)與宏觀參數(shù)標定的關(guān)鍵資料。②以蒙特卡洛方法為理論基礎(chǔ),構(gòu)建了描述石塊形態(tài)的隨機抽樣模型;利用PFC2D內(nèi)置的FISH語言進行二次開發(fā),構(gòu)建了基于粒度成分及隨機多邊形石塊的顆粒流填料模型,實現(xiàn)了對填料的粒度成分及不規(guī)則多邊形石塊較為準確的模擬。③構(gòu)建直剪試驗顆粒流數(shù)值模型,模擬了填料室內(nèi)直剪試驗的全過程,顆粒流數(shù)值模擬結(jié)果基本反映了填料的剪切特性。通過持續(xù)監(jiān)測并記錄模型中裂隙的位置,獲得了直剪試驗過程中隨著剪切位移的增加剪切面的發(fā)展歷程,并分析了剪切面的形態(tài)特征。④為擴大研究尺度,重新劃分了土石界限粒徑,并相應(yīng)改變模型最小顆粒粒徑,研究了高含石量巨粒土填料的尺寸效應(yīng)。結(jié)果表明,在試樣級配、加載條件均保持不變的情況下,模型尺寸增大,剪應(yīng)力峰值呈減小趨勢,剪應(yīng)力峰值對應(yīng)的剪切應(yīng)變有所減小,剪脹性逐漸減弱,粘聚力及內(nèi)摩擦角亦呈減小趨勢。這種變化在模型尺寸相對較大時趨于平緩。⑤運用等質(zhì)量代換法,保持粗細料的含量不變,設(shè)計了不同巨粒組土粒分布的數(shù)值模型。數(shù)值模擬結(jié)果表明:隨著模型中粒徑較大的石塊逐漸被粒徑小、數(shù)量多的石塊所取代,粘聚力逐漸降低,但內(nèi)摩擦角呈增大趨勢。以此指導(dǎo)工程實踐,填筑施工中應(yīng)按照相關(guān)規(guī)范控制石塊的粒徑,對于粒徑超出規(guī)范規(guī)定的石塊應(yīng)對其進行分解。⑥保持加載條件及各石塊粒組的相對比例不變,設(shè)計了含石量分別為10%、30%、40%、50%、60%、70%、80%、90%的數(shù)值模型。數(shù)值模擬結(jié)果表明:含石量越高,則剪應(yīng)力峰值越大,模型表現(xiàn)出更大的剛度,剪應(yīng)力-剪切應(yīng)變曲線近彈性段的斜率越大,剪應(yīng)力峰值對應(yīng)的剪切應(yīng)變越小,剪脹性逐漸增強。粘聚力及內(nèi)摩擦角隨不同含石量的變化曲線可分為三個部分:1)含石量10%~40%時,隨著含石量增大,內(nèi)摩擦角逐漸增大,粘聚力逐漸降低;2)含石量40%~70%時,隨著含石量增大,粘聚力增加到一定程度后逐漸穩(wěn)定,內(nèi)摩擦角變化較小;3)含石量70%~90%時,粘聚力隨含石量的增大顯著降低,而內(nèi)摩擦角明顯增大。根據(jù)以上結(jié)論,含石量大于70%時,隨著含石量的增大,填料的粘聚力大幅降低,加之夯實質(zhì)量難以得到保證,因此在填方工程中應(yīng)避免使用含石量大于70%的填料。
[Abstract]:The foundation of the infrastructure construction project in the southwest part of the Southwest has formed a large number of filling projects. The filler used mainly consists of crushed stone and soil mixed by blasting in the excavation area, and often has high stone content (up to 60%), and the large-grain group of soil particles (with a mass percentage of more than 15%). The size of the stone is large (up to 1m), which is referred to as the high-stone-containing large-particle soil filler. The shear characteristic is one of the most important bases for evaluating the properties of the filler, and the related shear strength and shear deformation characteristics are highly valued by the engineering and technical personnel. In order to study the shear characteristics of the high-stone-containing giant soil filler, this paper, based on the four-period expansion project of the Chongqing Jiangbei International Airport, based on the Monte-Carlo method, uses the FISH language built-in of the PFC to carry out secondary development. The particle flow packing model based on the particle size component and the random polygonal block is constructed, and the effect of the size effect, the particle size of the giant particle and the stone content on the shear characteristics of the filler is studied. The research results are of great reference value to the construction of the hilly land in the mountainous area. The main contents and results of this paper are as follows: The particle size composition and apparent characteristic of the high-stone-containing giant-particle soil filler are obtained through the on-site investigation, in-room screening and digital image processing, and the analysis of the stone shape provides a statistical basis for the construction of the random polygonal block model. An indoor direct shear test is carried out on the collected samples, and the experimental results provide the key data of the micro-parameter and macro-parameter calibration for subsequent particle flow numerical simulation. Based on the Monte-Carlo method, a random sampling model for describing the shape of the stone is constructed, and the particle flow packing model based on the particle size component and the random polygonal block is constructed by the secondary development of the FISH language built in the PFC2D. and the accurate simulation of the particle size component and the irregular polygonal block of the filler is realized. The numerical model of the particle flow of the direct shear test is constructed, and the whole process of the direct shear test in the packing chamber is simulated, and the numerical simulation results of the particle flow basically reflect the shearing characteristics of the filler. By continuously monitoring and recording the position of the fracture in the model, the development of the shear plane with the shear displacement in the course of the direct shear test is obtained, and the morphological characteristics of the shear plane are also analyzed. In order to enlarge the research scale, the particle size of the soil-rock boundary is re-divided, and the minimum particle size of the model is changed accordingly, and the size effect of the high-stone-containing giant-particle soil filler is studied. The results show that, under the condition that the sample stage and the loading condition are all the same, the size of the model is increased, the peak value of the shear stress is reduced, the shear strain corresponding to the peak value of the shear stress is reduced, the shear expansion is gradually reduced, and the viscosity and the internal friction angle are also reduced. this change tends to be gentle as the size of the model is relatively large. The numerical model of soil particle distribution in different macro-particle groups was designed by using the mass substitution method and other mass substitution method to keep the content of the coarse and fine material unchanged. The results of the numerical simulation show that, with the larger diameter of the stone in the model, the particle size is small, the number of stones is replaced, and the cohesive force is gradually reduced, but the internal friction angle is increasing. In order to guide the practice of the project, the particle size of the stone shall be controlled in accordance with the relevant specifications in the filling construction, and the stone shall be decomposed for the stone with the particle size exceeding the specification. In order to maintain the loading condition and the relative proportion of each block group, the numerical model with the stone content of 10%, 30%, 40%, 50%, 60%, 70%, 80% and 90%, respectively, was designed. The results of the numerical simulation show that the higher the stone content, the higher the shear stress peak, the higher the shear stress-shear strain curve near the elastic section, the smaller the shear strain corresponding to the shear stress peak, and the shear expansion. the viscosity and the internal friction angle can be divided into three parts along with the change curve of the different rock-containing quantity: 1) when the stone-containing amount is 10-40%, the internal friction angle is gradually increased with the increase of the stone-containing amount, and the viscous-accumulation force is gradually reduced; and 2) when the stone-containing amount is 40-70%, the stone-containing amount is increased, When the cohesive force is increased to a certain extent, the internal friction angle is small; 3) When the stone content is 70-90%, the adhesion force is significantly reduced with the increase of the stone content, and the internal friction angle is obviously increased. According to the above conclusion, when the stone content is more than 70%, with the increase of the stone content, the adhesion and accumulation force of the filler is greatly reduced, and the compaction quality is difficult to be guaranteed, so that the filler with the stone content of more than 70% shall be avoided in the filling project.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU751.4;TU432

【相似文獻】

相關(guān)期刊論文 前10條

1 方玉樹;對顆粒流理論的一點認識[J];水文地質(zhì)工程地質(zhì);1990年01期

2 張端明,雷雅潔,張美軍,李智華;混合顆粒流分形模型及相關(guān)有效熱傳導(dǎo)的分析[J];華中科技大學(xué)學(xué)報;2001年12期

3 黃德財;孫剛;厚美瑛;陸坤權(quán);;顆粒速度在顆粒流稀疏流-密集流轉(zhuǎn)變中的作用[J];物理學(xué)報;2006年09期

4 葉堅;毛旭鋒;夏建新;;顆粒流研究最新進展與挑戰(zhàn)[J];中央民族大學(xué)學(xué)報(自然科學(xué)版);2009年04期

5 白若虛;程雪松;鄭剛;;關(guān)于土滲透系數(shù)顆粒流細觀參數(shù)研究[J];低溫建筑技術(shù);2012年01期

6 孟凡凈;劉q;王偉;;剪切平行板間密集顆粒流的接觸力分布及各向異性分析[J];應(yīng)用數(shù)學(xué)和力學(xué);2013年07期

7 羅勇;龔曉南;吳瑞潛;;樁墻結(jié)構(gòu)的顆粒流數(shù)值模擬研究[J];科技通報;2007年06期

8 朱涵成;韓文喜;陳超;;砂巖常規(guī)三軸的顆粒流數(shù)值模擬[J];地質(zhì)災(zāi)害與環(huán)境保護;2013年03期

9 周英,鮑德松,張訓(xùn)生,雷哲民,胡國琦,唐孝威;邊界條件對二維斜面顆粒流顆粒分布的影響[J];物理學(xué)報;2004年10期

10 周健,池永;土的工程力學(xué)性質(zhì)的顆粒流模擬[J];固體力學(xué)學(xué)報;2004年04期

相關(guān)會議論文 前10條

1 楊馥菱;張慰慈;陳俊杉;謝尚賢;;碰撞模型參數(shù)對滑道道高濃度干顆粒流發(fā)展之影響(英文)[A];第七屆海峽兩岸工程力學(xué)研討會論文摘要集[C];2011年

2 秦琦;王等明;;斜面顆粒流對圍墻沖擊作用的離散單元法模擬[A];中國力學(xué)大會——2013論文摘要集[C];2013年

3 孟云偉;柴賀軍;;顆粒流離散元在滑坡運動過程模擬中的應(yīng)用[A];第一屆中國水利水電巖土力學(xué)與工程學(xué)術(shù)討論會論文集(上冊)[C];2006年

4 楊果成;劉啟一;胡茂彬;姜銳;吳清松;;雙瓶頸斜槽上的顆粒流相變和雙穩(wěn)態(tài)[A];中國力學(xué)大會——2013論文摘要集[C];2013年

5 胡國琦;厚美瑛;杜其永;;密集態(tài)顆粒流的激波結(jié)構(gòu)[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年

6 張家銘;任永強;;基于三維顆粒流理論的混合土體力學(xué)參數(shù)反演研究[A];顆粒材料計算力學(xué)研究進展[C];2012年

7 郭海慶;李志剛;;粒徑在顆粒流標定過程中對邊坡巖土體細觀參數(shù)的影響研究[A];中國計算力學(xué)大會'2010(CCCM2010)暨第八屆南方計算力學(xué)學(xué)術(shù)會議(SCCM8)論文集[C];2010年

8 孫其誠;王光謙;;斜面顆粒流的離散元模擬[A];中國科學(xué)技術(shù)協(xié)會2008防災(zāi)減災(zāi)論壇論文集[C];2008年

9 馬宗源;徐清清;黨發(fā)寧;;碎石土地基動力夯實的顆粒流離散元數(shù)值分析[A];第21屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅰ冊[C];2012年

10 郭海慶;李志剛;高莊平;;粒徑在顆粒流標定過程中對邊坡巖土體細觀參數(shù)的影響[A];巖石力學(xué)與工程的創(chuàng)新和實踐:第十一次全國巖石力學(xué)與工程學(xué)術(shù)大會論文集[C];2010年

相關(guān)博士學(xué)位論文 前5條

1 羅勇;土工問題的顆粒流數(shù)值模擬及應(yīng)用研究[D];浙江大學(xué);2007年

2 王偉;針對典型摩擦副的非流態(tài)化顆粒流潤滑特性研究[D];合肥工業(yè)大學(xué);2009年

3 曹文廣;稠密氣固兩相射流的實驗研究與數(shù)值模擬[D];華東理工大學(xué);2013年

4 曾遠;土體破壞細觀機理及顆粒流數(shù)值模擬[D];同濟大學(xué);2006年

5 邱成春;H-V 加筋路堤動力特性的試驗及顆粒流分析[D];上海大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 樊航;自由下落顆粒流卷吸空氣量及顆粒運動特性研究[D];西安建筑科技大學(xué);2015年

2 于凡;間質(zhì)流體對濕顆粒流化特性影響的研究[D];哈爾濱工業(yè)大學(xué);2015年

3 汪汝峰;深部人工凍結(jié)黏土加卸載顆粒流模擬研究[D];中國礦業(yè)大學(xué);2015年

4 王國呈;粘性顆粒在纖維體上沉積的數(shù)值模擬方法優(yōu)化[D];安徽工業(yè)大學(xué);2015年

5 王雷;基于顆粒流的高含石量巨粒土填料剪切特性研究[D];重慶大學(xué);2015年

6 王家軍;噴射顆粒流潤滑試驗研究及有限元仿真[D];合肥工業(yè)大學(xué);2009年

7 陳德文;錨固機理的模型試驗研究及其顆粒流數(shù)值模擬[D];山東大學(xué);2008年

8 王智勇;平行板顆粒流摩擦系統(tǒng)的力鏈構(gòu)型與演變研究[D];合肥工業(yè)大學(xué);2013年

9 廖靜薇;基于顆粒流強度折減法的粉質(zhì)粘土邊坡穩(wěn)定性分析[D];重慶大學(xué);2014年

10 陳宜楷;基于顆粒流離散元的尾礦庫壩體穩(wěn)定性分析[D];中南大學(xué);2012年

,

本文編號:2386350

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2386350.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f6be5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com