陸相頁巖儲(chǔ)層孔隙結(jié)構(gòu)演化特征及其控制因素
[Abstract]:The terrestrial shale gas resources account for 1/3 of the total shale gas resources, but the exploration breakthrough of the terrestrial shale gas is not large, and the pore structure of the reservoir which restricts the shale gas content is still very weak. In this paper, the continental shale of the Triassic Yanchang formation of the Ordos Basin and the Dawagou formation of the Middle Jurassic in the Qaidam Basin are taken as the research objects. The original shale samples, which have not been extracted and treated, are analyzed by TOC, pyrolysis of rocks, and X-ray diffraction. Field emission scanning electron microscopy (SEM), low pressure CO2/N2 adsorption, high pressure mercury injection and other techniques are used to study the reservoir characteristics, pore structure evolution and controlling factors of terrestrial shale. The results show that the continental shale has the characteristics of "two high and two low types": high organic carbon content and clay mineral content, low thermal evolution degree and brittle mineral content, and a large number of organic matter types, mainly partial humic mixed type. The main lithofacies types include clay shale, siliceous shale and mixed shale, in which siliceous shale has the most developed grain layer, and the TOC content of clay shale and mixed shale is high. Scanning electron microscope revealed that the pore types of continental shale in the study area are mainly intergranular pore, intragranular pore and organic pore. Compared with marine shale, the intergranular pore diameter of continental shale is larger (up to micron size). However, the pore diameter is small (tens to hundreds of nanometers), and the pore size and distribution of organic matter are not uniform. The pore size of continental clay shale is relatively small, the pore connectivity is good, and the slit pores with parallel walls and the ink bottle pores are relatively developed. The pore size of mixed shale is relatively large, the pore connectivity is poor, the wedge-shaped slit pore is relatively developed, and the ink bottle pore is less developed. With the increase of maturity, the unit TOC pore volume of clay shale decreases, the whole mixed shale decreases and then increases, and the micropore volume decreases. The ratio of pore volume to total pore volume of two types of lithofacies shale is high, and micropore and mesopore provide the main specific surface area. The ratio of mesopore to total pore volume and total specific surface area of clay shale 2~10nm decreased with the increase of evolution degree, while the proportion of 2~10nm medium pore to total pore volume and total specific surface area of mixed shale increased. The formation of immature oil and gas and the dissolution of organic acids promote the development of shale pores. The filling of liquid hydrocarbon and the deep compaction of shale reservoirs result in the decrease of effective pores of shale. The number and pore size of pores change rapidly in the window stage of oil generation. The formation of liquid hydrocarbons and the residual plugging of pores occur mainly in the micropores of 0.3~0.6nm and the mesoporous pores of 2~20nm. The existence of residual hydrocarbon has influence on pore structure characterization and gas bearing analysis of continental shale reservoir. At the stage of condensate gas, the pores of organic matter increase with the expulsion and cracking of hydrocarbons, and the pores blocked by residual liquid hydrocarbon open, and the internal pressure of shale reservoir decreases and the compaction increases. In addition, the development of organic pores is related to the occurrence of organic matter. The pore size of pores in organic matter is smaller than that of enriched organic matter due to the catalytic hydrocarbon generation of clay and pyrite. The porosity of organic matter is more developed than that of enriched organic matter.
【學(xué)位授予單位】:中國石油大學(xué)(北京)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P618.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姜振學(xué);唐相路;李卓;黃何鑫;楊佩佩;楊瀟;李衛(wèi)兵;郝進(jìn);;川東南地區(qū)龍馬溪組頁巖孔隙結(jié)構(gòu)全孔徑表征及其對含氣性的控制[J];地學(xué)前緣;2016年02期
2 黃金亮;董大忠;李建忠;胡俊文;王玉滿;李登華;王淑芳;;陸相頁巖儲(chǔ)層特征及其影響因素:以四川盆地上三疊統(tǒng)須家河組頁巖為例[J];地學(xué)前緣;2016年02期
3 原園;姜振學(xué);喻宸;王朋飛;李廷微;郭天旭;趙若彤;唐相路;;高豐度低演化程度湖相頁巖儲(chǔ)層特征——以柴達(dá)木盆地北緣中侏羅統(tǒng)為例[J];地質(zhì)學(xué)報(bào);2016年03期
4 周磊;康志宏;童雪飛;王成;楊耀東;;阿爾金山前中、下侏羅統(tǒng)頁巖氣成藏地質(zhì)條件[J];地學(xué)前緣;2016年01期
5 邵龍義;劉磊;文懷軍;李永紅;張文龍;李猛;;柴北緣盆地YQ-1井中侏羅統(tǒng)石門溝組泥頁巖納米孔隙特征及影響因素[J];地學(xué)前緣;2016年01期
6 陳生蓉;帥琴;高強(qiáng);田亞;徐生瑞;黃云杰;;基于掃描電鏡-氮?dú)馕摳胶蛪汗ǖ捻搸r孔隙結(jié)構(gòu)研究[J];巖礦測試;2015年06期
7 董春梅;馬存飛;欒國強(qiáng);林承焰;張憲國;任麗華;;泥頁巖熱模擬實(shí)驗(yàn)及成巖演化模式[J];沉積學(xué)報(bào);2015年05期
8 李鉅源;;渤海灣盆地東營凹陷古近系泥頁巖孔隙特征及孔隙度演化規(guī)律[J];石油實(shí)驗(yàn)地質(zhì);2015年05期
9 潘磊;肖賢明;周秦;;可溶有機(jī)質(zhì)對表征頁巖儲(chǔ)層特性的影響[J];天然氣地球科學(xué);2015年09期
10 陳燕燕;鄒才能;Maria Mastalerz;朱如凱;白斌;楊智;;頁巖微觀孔隙演化及分形特征研究[J];天然氣地球科學(xué);2015年09期
相關(guān)博士學(xué)位論文 前1條
1 李猛;柴達(dá)木盆地北緣侏羅系沉積體系與頁巖氣富集規(guī)律[D];中國礦業(yè)大學(xué)(北京);2014年
相關(guān)碩士學(xué)位論文 前4條
1 李建超;泥頁巖儲(chǔ)層微觀孔隙結(jié)構(gòu)模型及吸附能力研究[D];西南石油大學(xué);2015年
2 王曉鵬;柴達(dá)木盆地北緣中侏羅統(tǒng)頁巖氣成藏條件分析[D];長安大學(xué);2015年
3 冷雪霜;頁巖氣賦存與滲流特征研究[D];西南石油大學(xué);2012年
4 張道鋒;陜北斜坡南部三疊系延長組沉積體系研究[D];西北大學(xué);2006年
,本文編號(hào):2367190
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2367190.html