非飽和帶水分運(yùn)移的有限分析數(shù)值模擬理論方法
[Abstract]:The package gas zone is an important link between the atmospheric precipitation, the surface water and the ground water, and is of great significance to the protection of the ecological environment in the arid and semi-arid areas. Because the dynamic parameters describing the water migration of unsaturated zone have a high degree of non-linearity, the Richard's equation, which results in the water migration of unsaturated zone, also has a high degree of non-linearity, so it is extremely difficult to solve this kind of equation. In this paper, the analytical solution to the problem of water migration in the air zone of the bag can be obtained under relatively simple fixed conditions. However, in the case of the water flow in unsaturated zone under the complicated conditions, the most effective method is to adopt the numerical simulation method. Richard's equation is a second-order elliptic equation in space, but it has a parabolic equation for time. Therefore, a series of problems such as numerical dispersion, numerical oscillation and non-conservation of quality can be easily caused when using the traditional numerical simulation method such as the finite difference method and the finite element method. In the 1980s, Chen Jingren proposed a new numerical method of numerical calculation _ finite analytic method. The basic idea of the finite analytic method is to form the whole numerical solution by the local analytic solution of the control equation, so that the obtained solution can maintain the physical property of the original problem, and the format can reflect the convection and the diffusion effect by automatically adjusting the limited analysis coefficient, and the numerical stability is high. In this paper, the finite analytic method is applied to solve the problem of water migration in the package gas zone. In this paper, the finite analysis and calculation scheme of the water migration under the homogeneous condition and the finite analytic calculation method under the non-homogeneous condition are presented in this paper. Through the qualitative and quantitative study, the following results and conclusions can be obtained: 1. In this paper, the stability and the convergence of the finite analytic calculation form are strictly proved, that is, the finite analytic method is proved to be unconditionally stable and convergent. In addition to the limited analysis and calculation of the negative pressure type, the finite analysis and calculation form of the four forms of homogeneous condition can obtain the numerical solution with high stability, good convergence and high precision, and can control the quality balance error better. By comparison with the analytical solution, the finite analysis and calculation form of the mixed-type Richard equation can obtain the numerical solution with the highest calculation accuracy and the best control quality balance error; the water content type Richard equation and the Kirchhoff-transformed Richard equation are the second in the finite analysis and calculation format, The finite analysis of the negative pressure type Richard's equation is the worst. Therefore, the limited analysis and calculation format of the negative pressure type Richard equation is not recommended. A numerical solution with high accuracy can still be obtained under the condition of relatively rough space steps, such as the mixed-type Richard's equation, the water-content-type Richard equation and the Kirchhoff-transformed Richard's equation. The finite analysis and analysis of the negative pressure type Richard's equation based on Kirchhoff's transformation are derived for the first time. The method is used to solve the problem of moisture migration in the non-homogeneous condition of the package gas zone. Compared with the analytical solution, the proposed algorithm can solve the problem that the variable is not continuous in the non-homogeneous interface after the Kirchhoff transformation, and the algorithm can obtain high-precision numerical solution under the condition of looser step. However, using the finite difference method (using the geometric mean to calculate the permeability coefficient of the internal node), the requirement of the space step size is high, and a great local single-point error can be caused on the non-homogeneous interface. and it also affects the calculation accuracy of the whole computing domain. The application of finite analytic method to the simulation of an indoor experiment. The simulation results of the finite analytic method are higher than that of the measured values, and the finite analytic method can be used to solve the relative complex practical problems.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P641.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張光輝;;溫度在巖土水分運(yùn)移中的作用[J];勘察科學(xué)技術(shù);1988年06期
2 張喜英,劉孟雨,,雷玉平;土壤—植物—大氣連續(xù)體水分運(yùn)移阻力的田間試驗(yàn)與模擬研究[J];中國農(nóng)業(yè)氣象;1995年02期
3 宮兆寧;宮輝力;鄧偉;趙文吉;;淺埋條件下地下水-土壤-植物-大氣連續(xù)體中水分運(yùn)移研究綜述[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2006年S1期
4 張蔚榛;包氣帶水分運(yùn)移問題講座(一)——包氣帶水分運(yùn)移基本方程[J];水文地質(zhì)工程地質(zhì);1981年01期
5 肖樹鐵;包氣帶水分運(yùn)移問題講座(三)——地面入滲水分在包氣帶的運(yùn)動(dòng)[J];水文地質(zhì)工程地質(zhì);1981年03期
6 文科軍;楊栩;吳麗萍;;植穴控制體對(duì)鹽漬土水分運(yùn)移的影響[J];農(nóng)業(yè)工程學(xué)報(bào);2010年03期
7 張之淦 ,劉芳珍 ,張洪平 ,劉恩凱;應(yīng)用環(huán)境氚研究黃土包氣帶水分運(yùn)移及入滲補(bǔ)給量[J];水文地質(zhì)工程地質(zhì);1990年03期
8 張英虎;牛健植;韓旖旎;杜曉晴;陳上杰;;鷲峰地區(qū)林木根系和石礫對(duì)土壤水分運(yùn)移速率的影響[J];干旱區(qū)資源與環(huán)境;2014年05期
9 陳家軍,王金生,趙英杰;包氣帶水分運(yùn)移數(shù)值模擬研究[J];工程勘察;1994年04期
10 劉科良;;滴灌條件下水分運(yùn)移規(guī)律研究[J];科技情報(bào)開發(fā)與經(jīng)濟(jì);2007年33期
相關(guān)會(huì)議論文 前2條
1 李久生;李蓓;計(jì)紅燕;;滴灌施肥條件下層狀土壤水分運(yùn)移分布的試驗(yàn)研究[A];2007年中國農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2007年
2 范高功;侯光才;高世祥;;天山北麓細(xì)土平原區(qū)凍結(jié)期包氣帶水分運(yùn)移及其生態(tài)環(huán)境效應(yīng)分析[A];2002年中國西北部重大工程地質(zhì)問題論壇論文集[C];2002年
相關(guān)博士學(xué)位論文 前4條
1 廖人寬;旱地土根系統(tǒng)水分運(yùn)移對(duì)化學(xué)調(diào)控的響應(yīng)機(jī)制及模擬研究[D];中國農(nóng)業(yè)大學(xué);2015年
2 王云權(quán);蒸發(fā)條件下土壤水分運(yùn)移模擬研究—耦合毛管、薄膜和水汽[D];蘭州大學(xué);2015年
3 廖人寬;旱地土根系統(tǒng)水分運(yùn)移對(duì)化學(xué)調(diào)控的響應(yīng)機(jī)制及模擬研究[D];中國農(nóng)業(yè)大學(xué);2015年
4 張勁松;農(nóng)林復(fù)合系統(tǒng)水分運(yùn)移模型與水分生態(tài)特征的研究[D];中國農(nóng)業(yè)大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 管清浩;寨頭村黃土邊坡包氣帶水分運(yùn)移規(guī)律研究[D];長安大學(xué);2015年
2 張?jiān)谟?非飽和帶水分運(yùn)移的有限分析數(shù)值模擬理論方法[D];長安大學(xué);2015年
3 劉元元;滴灌條件下土壤水分運(yùn)移模型的辨識(shí)與優(yōu)化[D];上海應(yīng)用技術(shù)學(xué)院;2015年
4 杜曉晴;密云水庫水源涵養(yǎng)林土壤水分運(yùn)移及營養(yǎng)物質(zhì)遷移研究[D];北京林業(yè)大學(xué);2015年
5 陳浩;內(nèi)蒙孿井灌區(qū)土壤水分運(yùn)移及地下水氫氧穩(wěn)定同位素特征研究[D];中國海洋大學(xué);2007年
6 任倩慧;植物混摻條件下二維土壤水分運(yùn)移試驗(yàn)及模擬研究[D];蘭州理工大學(xué);2014年
7 武曉麗;北方土石山區(qū)土壤結(jié)構(gòu)與水分運(yùn)移研究[D];北京林業(yè)大學(xué);2013年
8 于洋;痕量灌溉技術(shù)在新疆過渡帶典型土壤中水分運(yùn)移應(yīng)用試驗(yàn)研究[D];新疆大學(xué);2014年
9 李新鳳;高潛水位采煤塌陷區(qū)不同土壤重構(gòu)模式水分運(yùn)移規(guī)律與模擬研究[D];中國地質(zhì)大學(xué)(北京);2014年
10 商潔;巴丹吉林沙漠腹地包氣帶水分運(yùn)移研究[D];中國地質(zhì)大學(xué)(北京);2014年
本文編號(hào):2317267
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2317267.html