藁城市地下水回灌示范場(chǎng)地?cái)?shù)值模擬研究
[Abstract]:Due to the overexploitation of groundwater, groundwater resources in North China Plain are faced with serious shortage and deterioration of ecological environment. Therefore, how to rationally plan and utilize water resources and increase the storage and storage of groundwater resources has become a key issue in the study. Artificial recharge of groundwater plays an important role in replenishing groundwater resources. In this paper, the artificial recharge test site of groundwater in Liyuanzhuang Village of Gaocheng City was selected as the research area to analyze the effect of artificial recharge of groundwater. Based on the analysis of geological and hydrogeological conditions of artificial recharge test site in Liyuanzhuang Village in Gaocheng City, the numerical simulation model of groundwater was established by using the data of 2013-2014 and GMS software. The hydrogeological parameters are corrected by the fitting identification of the water level process line, and the model is further verified based on the groundwater recharge test data, which shows that the established model meets the precision requirements and basically reflects the hydraulic characteristics of the groundwater flow system. The water balance is analyzed so as to provide reasonable parameters for the recharge prediction model. Based on the flow model, a numerical model of groundwater recharge is established. According to the number of recharge wells, two combined recharge schemes of single well and multi-well are designed, and the effects of the two schemes are analyzed and compared. The results show that the artificial recharge of groundwater does not effectively restore the amount of groundwater resources stored in the study area, and does not produce better resource benefit, which is mainly due to the small scope of the study area, the poor sealing and the large amount of lateral outflow. At the end of the recharge, the range of water level variation above 0.1 m is 0.54 km ~ 2, and the maximum increase of groundwater level is 5.2 m, and the second scheme is less than no recharge, and at the end of the recharge, the maximum increase of groundwater level is 5.2 m. The range of variation of groundwater level above 0.1 m is 0.38 km ~ 2, and the maximum increase of groundwater level is 1.3 m. Scheme two compares with scheme one, the rise of water level is small on the whole. On the basis of the recharge scheme 1, the site solute transport model was established. The total hardness of TDS, and nitrite nitrogen were selected to simulate and calculate, and the variation and distribution of each index in the recharge water after the recharge was finished were analyzed. The results show that the total hardness of TDS, and the range of nitrite nitrogen affected by the recharge are 34343m2m2Ni34877m2 and 27929 m2 respectively. As a whole, with the continuous migration of solute in groundwater, the solute or index (nitrite nitrogen), which is higher than the initial concentration of groundwater, will gradually decrease under the action of convection diffusion and hydrodynamic dispersion. The solute or index (TDS and total hardness) of reirrigation concentration lower than the initial concentration of groundwater can effectively reduce the corresponding concentration in the adjacent area.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P641.25
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 戴樹聲;;地下水回灌工程的投資和效益的估算[J];水利經(jīng)濟(jì);1986年04期
2 徐征和;陳吉亭;劉健勇;樊向陽(yáng);;地下水回灌補(bǔ)源生態(tài)修復(fù)技術(shù)研究[J];地下水;2006年03期
3 張猛;成徐州;趙璇;;采用組合式強(qiáng)化井灌的人工地下水回灌[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年09期
4 胡海軍;李春暉;;淺議水源熱泵系統(tǒng)中的地下水回灌[J];地下水;2010年02期
5 蘇同敏;;西安市建成投運(yùn)六處地下水回灌示范點(diǎn)[J];地下水;2012年04期
6 張建友;張紅;秦作棟;;山西省地下水回灌前景分析[J];山西水利;2013年01期
7 劉金鵬;;兗州縣地下水回灌補(bǔ)源工程效益分析[J];地下水;1989年01期
8 劉金鵬;宋永強(qiáng);;兗州縣地下水回灌補(bǔ)源效益分析[J];水資源保護(hù);1989年04期
9 王旭f;張學(xué)文;;沈陽(yáng)市水源保護(hù)與地下水回灌[J];東北水利水電;1991年11期
10 費(fèi)文;;地源熱泵之地下水回灌[J];供熱制冷;2011年09期
相關(guān)會(huì)議論文 前3條
1 王沂;汪中華;王壽岷;;地下水回灌工程對(duì)回灌水質(zhì)控制的研究[A];中國(guó)海洋湖沼學(xué)會(huì)水文氣象分會(huì)、中國(guó)海洋湖沼學(xué)會(huì)潮汐及海平面專業(yè)委員會(huì)、中國(guó)海洋湖沼學(xué)會(huì)計(jì)算海洋物理專業(yè)委員會(huì)、山東(暨青島市)海洋湖沼學(xué)會(huì)2005年學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
2 蹇興超;;土壤含水層處理技術(shù)與人工地下水回灌簡(jiǎn)介[A];'2001中國(guó)水污染治理行業(yè)發(fā)展論壇論文集[C];2001年
3 楊佃俊;楊樹偉;楊樹華;;對(duì)地下水回灌中氣相堵塞的研究[A];地溫資源與地源熱泵技術(shù)應(yīng)用論文集(第四集)[C];2011年
相關(guān)重要報(bào)紙文章 前2條
1 記者 韓勛;上善若水 水饋?zhàn)匀籟N];西安日?qǐng)?bào);2011年
2 本欄點(diǎn)評(píng) 王國(guó)辰;向地下要空間時(shí)須保地面不沉降[N];經(jīng)濟(jì)參考報(bào);2009年
相關(guān)碩士學(xué)位論文 前6條
1 李園;藁城市地下水回灌示范場(chǎng)地?cái)?shù)值模擬研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
2 王麗娜;城市污水再生用于地下水回灌及健康風(fēng)險(xiǎn)評(píng)價(jià)[D];哈爾濱工業(yè)大學(xué);2006年
3 王迎迎;北京市平原區(qū)地下水回灌數(shù)值模擬研究[D];清華大學(xué);2011年
4 張建友;杏花洪積扇超采區(qū)人工地下水回灌補(bǔ)源研究[D];山西大學(xué);2013年
5 田q,
本文編號(hào):2288317
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2288317.html