攀西地區(qū)釩鈦磁鐵礦中稀有分散元素富集規(guī)律
[Abstract]:Panxi area is an important metallogenic belt of V-Ti magnetite and one of the main iron ore bases in China. The ore reserves account for about 15% of the total iron ore reserves in China. Ge, Nb, PGE and so on. This paper mainly studies seven deposits in Panxi area: Panzhihua, Hongge, Baima, Xinjie, Heigutian, Anning and Taihe. It mainly studies the distribution and enrichment of rare dispersed elements in vanadium-titanium magnetite. Relying on the key technology research project of resource potential evaluation and development and utilization (Panzhizi [2015] 70), the associated elements of vanadium-titanomagnetite in Panxi area, including scandium (Sc), gallium (Ga), vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni) and platinum group elements (PGE), germanium (Ge), indium (In), cadmium (Cd), are mainly studied, which are not available because of their low content. Nb and Ta ore bodies are mainly hosted in alkaline rocks and separated from V-Ti magnetite bodies in space. The contents of Nb and Ta in V-Ti magnetite ore bodies are generally very low, and have no comprehensive utilization value in iron ore development and utilization. Ga and Sc in tailings, contrary, mainly concentrated in magnetite, iron ore content is significantly higher than all types of rocks, mainly into iron concentrate in the process of mineral processing; Vanadium, cobalt and iron have a more obvious positive correlation, mainly concentrated in iron ore, iron and titanium oxide content is much higher than rock, mainly into the mineral processing process. In the iron concentrate, chromium and nickel are mainly concentrated in ultrabasic rocks (ores) at the bottom of the rock mass, but their relationship with iron and titanium is not obvious. The content of iron and titanium oxides varies greatly in each mining area. Nickel is mainly concentrated in sulfides at the bottom of the rock mass. Pyroxene is the most abundant type of gallium; Panzhihua ore district is the most abundant type of gallium; gabbro rich in magnetite is the most abundant type of rock, the higher the iron content, the more abundant gallium; Baima ore district is the most abundant vanadium, followed by Panzhihua ore district, mainly concentrated in iron ore; Xinjie and Hongge ore district is the most abundant chromium; and cobalt ore is the most abundant. Hongge ore district and Panzhihua ore district are mainly enriched in iron ore, Hongge ore district is the most nickel-rich mining area, followed by Baima mine district and Xinjie mine district. Independent platinum ore bodies have been circled. The content of other elements in Anning mining area is very low except for vanadium which is slightly high and has certain comprehensive utilization value. The research degree in Heigutian mining area is very low. The enrichment regularity of rare dispersed elements and non-ferrous metals associated with vanadium-titanium magnetite in Panxi area has been studied systematically in this paper. Based on a large amount of data collected and the results of this analysis and test, a comprehensive analysis has been carried out. The rare dispersed elements in Hongge, Panzhihua, Baima, Xinjie, Heigutian and other mining areas have been preliminarily identified. The basic characteristics of element distribution, which mining areas, which types of rocks and ores have what kind of rare dispersed elements, which mining areas have the most enriched rare dispersed elements and the most comprehensive utilization value, have been identified.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P618.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭文勤;鄧宇峰;宋謝炎;陳列錳;于宋月;周國富;劉世榮;向建新;;攀枝花巖體鈦鐵礦成分特征及其成因意義[J];巖石學(xué)報;2014年05期
2 佘宇偉;宋謝炎;于宋月;陳列錳;魏宇;鄭文勤;;磁鐵礦和鈦鐵礦成分對四川太和富磷灰石釩鈦磁鐵礦床成因的約束[J];巖石學(xué)報;2014年05期
3 陳列錳;易俊年;宋謝炎;于宋月;佘宇偉;頡煒;欒燕;向建新;;峨眉山大火成巖省內(nèi)帶黑谷田含釩鈦磁鐵礦層狀巖體成因[J];巖石學(xué)報;2014年05期
4 李曉琴;;攀枝花地區(qū)礦產(chǎn)綜合利用現(xiàn)狀與發(fā)展探討[J];中國資源綜合利用;2013年08期
5 肖亮;楊勇攀;;攀枝花市有色及稀貴金屬產(chǎn)業(yè)發(fā)展思路及重點初討[J];特區(qū)經(jīng)濟(jì);2012年03期
6 鐘宏;朱維光;漆亮;周美夫;宋謝炎;張貽;;攀西地區(qū)峨眉山玄武巖的鉑族元素地球化學(xué)特征[J];科學(xué)通報;2006年11期
7 周美夫;攀西地區(qū)層狀輝長巖體及釩鈦磁鐵礦床的成因(英文)[J];巖石礦物學(xué)雜志;2005年05期
8 張乾;朱笑青;高振敏;潘家永;;中國分散元素富集與成礦研究新進(jìn)展[J];礦物巖石地球化學(xué)通報;2005年04期
9 顧雪祥,王乾,付紹洪,唐菊興;分散元素超常富集的資源與環(huán)境效應(yīng):研究現(xiàn)狀與發(fā)展趨勢[J];成都理工大學(xué)學(xué)報(自然科學(xué)版);2004年01期
10 溫春齊;曹志敏;羅小軍;霍艷;;攀枝花鐵礦床稀土元素特征[J];礦床地質(zhì);2002年S1期
相關(guān)博士學(xué)位論文 前3條
1 徐爭啟;攀枝花釩鈦磁鐵礦區(qū)重金屬元素地球化學(xué)特征[D];成都理工大學(xué);2009年
2 李佑國;基于“3S”技術(shù)的攀西地區(qū)銅鎳鉑族元素礦床找礦靶區(qū)篩選[D];成都理工大學(xué);2007年
3 鄭建斌;峨眉山玄武巖PGE富集機理——兼論陸海玄武巖PGE成礦作用差異[D];中國海洋大學(xué);2004年
相關(guān)碩士學(xué)位論文 前5條
1 何益;攀枝花層狀巖體鈧的地球化學(xué)特征及富集規(guī)律[D];成都理工大學(xué);2016年
2 任鵬;陜西省典型鉛鋅礦床中分散元素的賦存狀態(tài)和富集機制[D];長安大學(xué);2013年
3 趙偉;四川省紅格釩鈦磁鐵礦床地質(zhì)地球化學(xué)特征[D];成都理工大學(xué);2013年
4 凌超發(fā);GIS支持下的攀西地區(qū)鉑族元素(PGE)成礦地質(zhì)條件分析與成礦預(yù)測[D];成都理工大學(xué);2003年
5 羅小軍;攀枝花釩鈦磁鐵礦礦床韻律層特征及其研究意義[D];成都理工大學(xué);2003年
,本文編號:2208428
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2208428.html