時(shí)空二維方向軌線時(shí)頻峰值濾波消減地震勘探隨機(jī)噪聲研究
[Abstract]:Seismic exploration, as one of the main exploration methods in geophysical exploration, plays an important role in resource exploration and geological structure research. The seismic data collected in the field often contain a lot of noise, which seriously affects the follow-up inversion and interpretation work. The signal-to-noise ratio (SNR) and the resolution of the data are of great significance to the study of geological structure and the exploration of oil and gas resources.Most of the existing denoising methods at home and abroad are limited by certain assumptions or conditions.Under certain conditions, such as low SNR, complex random noise, etc., ideal denoising effect can not be obtained. TFPF (Time Frequency Peak Filtering) algorithm developed in 1998 has low signal-to-noise ratio (SNR) and non-stationary signal processing ability, but the traditional TFPF algorithm still has some shortcomings, such as fixed window length, ignoring the correlation between adjacent channels and so on. The shortcomings of traditional TFPF in seismic exploration data processing are discussed. Combining with the theory of radial trace transform, the TFPF algorithm of space-time two-dimensional directional trajectory based on parallel radial trajectory and nonlinear hyperbolic trajectory is proposed respectively. The filtering performance and practicability of the new algorithm are verified by processing synthetic seismograms and field seismic data. Based on the idea of radial track transform, this paper breaks through the limitation of traditional TFPF in processing nonlinear signals, and constructs a parallel radial track TFPF denoising model for the first time to realize high fidelity recovery of medium and high frequency signals. The limitation of filtering can reduce the error caused by TFPF fundamentally, overcome the disadvantage of amplitude attenuation or even distortion of reflected waves with different frequency components caused by fixed filtering window length in traditional TFPF, and effectively realize high fidelity recovery of medium and high frequency reflections. Taking, resampling point coordinate approximation and sample point interpolation as key links, the influence of radial trajectories with different slopes on noise reduction and the selection of filtering window length are discussed in combination with simulated seismic records. The simulation results of synthetic seismograms under different background noises and their comparison with traditional TFPF show that the parallel radial trajectory TFPF method can effectively reduce the random noise under the same window length. The amplitude and energy of the reflected wave recovered are closer to the ideal value, and the effective frequency components (especially the high frequency reflection in-phase axis) are more complete. In order to obtain high-quality seismic data and further improve the signal-to-noise ratio, in view of the limitation of the incomplete matching between the radial trajectory and the reflection coaxial, this paper makes full use of the spatial-temporal correlation of seismic wavelet. The TFPF denoising model of nonlinear hyperbolic trajectory is established based on the time-distance relation curve of reflection wave. The TFPF denoising model of parallel radial trajectory is improved by avoiding the partial energy attenuation caused by the mismatch between the trajectory and the phase axis. Establishment, selection of optimal filtering trajectory and sampling of data sample points are studied. The high matching degree between hyperbolic trajectory and phase axis maximizes the linearity of the effective wave after sampling. Its frequency is significantly reduced, the filtering window is longer, the ability of noise reduction is stronger, the filtering effect is no longer strictly limited by the filtering window length and the window length. The results of synthetic seismic data denoising show that the hyperbolic track TFPF algorithm has good filtering performance in low signal-to-noise ratio environment. Compared with the parallel radial track TFPF, the hyperbolic track TFPF has better noise reduction effect under the same window length, and its recovery is opposite. The amplitude and frequency band are the closest to the ideal value, the wavelet energy is better maintained, and the signal-to-noise ratio is greatly improved after filtering. The processing results of real common shot seismic data show that the hyperbolic trajectory TFPF algorithm has more advantages in suppressing random noise in seismic exploration, and the reconstructed reflection coaxiality is clearer and more coherent. Both TFPF models make full use of the spatial-temporal correlation of seismic waves and extend the filtering direction to the optimal filtering trajectory direction close to the reflection in-phase shape, so as to optimize the linearity of the effective reflection wave. In this paper, two optimal filtering trajectory selection methods are proposed for different trajectory patterns. In the parallel radial trajectory model, the optimal filtering trajectory selection is the key link of the whole time-space trajectory TFPF denoising model. For the first time, the optimal filtering trajectory is determined by finding the farthest point of the line connecting the two ends of the coaxial axis. According to the distance formula from the geometric midpoint to the straight line, the distances from different points on the coaxial axis to the two ends of the line are calculated respectively, and the maximum distances are connected with the end points of a certain axis to obtain the optimal filtering trajectory. In seismic records, the in-phase axis is regarded as the edge of the image, and the position and trend of the in-phase axis are detected based on the Canny operator edge detection method. According to the correlation difference between the reflected wave and noise along the in-phase axis, the curvature range of the track is determined by the weighted mean method, and the track corresponding to the maximum superimposed energy along the track is selected. As the optimal filtering trajectory.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P631.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王德利;臨界點(diǎn)附近軌線的拓?fù)浣Y(jié)構(gòu)[J];湖北民族學(xué)院學(xué)報(bào)(自然科學(xué)版);1990年02期
2 陸虎;計(jì)劃過(guò)程的單調(diào)功利軌線[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);1990年02期
3 李志錦,,紀(jì)立人;軌線不穩(wěn)定與誤差增長(zhǎng)[J];氣象學(xué)報(bào);1995年02期
4 余澍祥;孤立塊與連結(jié)軌線的存在性[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1997年04期
5 丁昌明;似梯度型系統(tǒng)的連結(jié)軌線[J];數(shù)學(xué)學(xué)報(bào);2000年06期
6 歐陽(yáng)成;姚靜蓀;溫朝暉;莫嘉琪;;一類(lèi)廣義鴨軌跡系統(tǒng)軌線的構(gòu)造[J];物理學(xué)報(bào);2012年03期
7 王德利;臨界點(diǎn)附近軌線的拓?fù)浣Y(jié)構(gòu)[J];佛山大學(xué)佛山師專(zhuān)學(xué)報(bào)(理工版);1991年04期
8 馮貝葉;同宿及異宿軌線的研究近況[J];數(shù)學(xué)研究與評(píng)論;1994年02期
9 丁紅宇;同宿軌線的擾動(dòng)及應(yīng)用[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);1986年01期
10 史樹(shù)中;吳智琴;;純交換經(jīng)濟(jì)的單調(diào)軌線[J];應(yīng)用數(shù)學(xué)與計(jì)算數(shù)學(xué)學(xué)報(bào);1989年02期
相關(guān)會(huì)議論文 前2條
1 薛禹勝;;軌線的保穩(wěn)降維方法及其在非線性動(dòng)力學(xué)中的應(yīng)用[A];中國(guó)科協(xié)2001年學(xué)術(shù)年會(huì)分會(huì)場(chǎng)特邀報(bào)告匯編[C];2001年
2 叢山;施頌椒;羅文;朱培申;;空戰(zhàn)戰(zhàn)術(shù)飛行軌線規(guī)劃專(zhuān)家系統(tǒng)研究[A];1991年控制理論及其應(yīng)用年會(huì)論文集(下)[C];1991年
相關(guān)重要報(bào)紙文章 前1條
1 魏道科;再現(xiàn)上軌線壓力[N];中國(guó)證券報(bào);2003年
相關(guān)博士學(xué)位論文 前4條
1 張潔;時(shí)空二維方向軌線時(shí)頻峰值濾波消減地震勘探隨機(jī)噪聲研究[D];吉林大學(xué);2015年
2 張志紅;幾個(gè)典型微觀反應(yīng)體系的準(zhǔn)經(jīng)典軌線計(jì)算[D];大連理工大學(xué);2007年
3 趙娟;準(zhǔn)經(jīng)典軌線和含時(shí)波包方法研究三原子體系的動(dòng)力學(xué)過(guò)程[D];大連理工大學(xué);2013年
4 何建鋒;基元反應(yīng)N(~4S)+O_2(X~3∑_g~-)→NO(X~2Π)+O(~3P)的準(zhǔn)經(jīng)典軌線研究與辛算法計(jì)算[D];吉林大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 孫萍;兩個(gè)元反應(yīng)的準(zhǔn)經(jīng)典軌線計(jì)算研究[D];大連交通大學(xué);2012年
2 鄧桂豐;一類(lèi)余維3的鞍--焦點(diǎn)異宿環(huán)分支[D];華東師范大學(xué);2005年
3 解智敏;反應(yīng)O(~1D)+HD的準(zhǔn)經(jīng)典軌線計(jì)算研究[D];大連交通大學(xué);2010年
4 滕欣;準(zhǔn)經(jīng)典軌線法計(jì)算化學(xué)反應(yīng)Ba+CHCl_3,Ca+CF_3I,Ba+SiCl_4[D];大連海事大學(xué);2015年
5 劉浩;H_2+F反應(yīng)的準(zhǔn)經(jīng)典軌線研究[D];山東師范大學(xué);2009年
6 李紅;O+HBr及其逆反應(yīng)立體動(dòng)力學(xué)性質(zhì)的準(zhǔn)經(jīng)典軌線理論研究[D];山東師范大學(xué);2012年
7 趙小學(xué);反應(yīng)Sr+CH_3Br,Sr+CH_3I的準(zhǔn)經(jīng)典軌線計(jì)算研究[D];大連交通大學(xué);2008年
8 高山水;Ba+CH_3Br和Ba+CHCl_3兩個(gè)反應(yīng)體系的準(zhǔn)經(jīng)典軌線研究[D];大連海事大學(xué);2011年
9 夏文文;Ba+HBr,Ca+CH_3Br,Sr+CH_3Br反應(yīng)體系的準(zhǔn)經(jīng)典軌線研究[D];大連海事大學(xué);2009年
10 趙娟;H+OF及其逆反應(yīng)立體動(dòng)力學(xué)性質(zhì)的準(zhǔn)經(jīng)典軌線理論研究[D];山東師范大學(xué);2010年
本文編號(hào):2201476
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2201476.html