基于Fast-AIC算法的微地震事件初至拾取及自動識別技術研究
[Abstract]:Microseismic monitoring technology is one of the most reliable methods for evaluating fracturing effect in oil field at present. Through accurate location of microseismic events, fracture strike, dimension and inversion mechanism can be judged, which provides a basis for subsequent production and development of oil field. Automatic identification of microseismic events and first break pick-up is one of the most important techniques. The picking speed and precision of seismic wave at first arrival directly affect the efficiency of micro-seismic positioning and the reliability of positioning results. Micro-seismic monitoring methods are mainly used in Tianjin. The micro-seismic source locates several hundred meters or even several kilometers below the earth's surface, and the signal-to-noise ratio of micro-seismic records is generally low, which leads to the limitations of the existing methods of automatic identification of micro-seismic events and first break picking in processing actual micro-seismic data. In order to accurately pick up the first arrival time of microseismic signals corresponding to all microseismic events, the number and time of microseismic events induced by hydraulic fracturing are uncertain. Firstly, the number of microseismic events and the approximate induced time are determined, and then the local microseismic data are picked up precisely according to the induced time of microseismic events. Akaike Information Criteria (AIC) method is simple to implement and easy to calculate. It is especially suitable for local data acquisition with microseismic events. However, the calculation efficiency of large-scale microseismic data processing for long-term records needs to be improved. In order to overcome the shortcomings in the above studies, a new method based on Fast-AIC algorithm is proposed to pick up the first break of microseismic signals. In order to overcome the dependence of micro-seismic identification method based on perforation signal on pre-perforation data, a layered velocity model based on acoustic logging curve is proposed and ray tracing theory is used to forward modeling when there is no actual perforation data. The perforation signal is calculated instead of the actual perforation signal. Then, according to the geophone arrangement parameters and formation velocity parameters of hydraulic fracturing monitoring system, the local effective data is selected near the trigger time of micro-seismic events, and the local data is filtered by Curvelet transform to provide high signal-to-noise ratio for accurately picking up micro-seismic signals. Finally, in order to improve the efficiency of picking up the first break of microseismic signals, the traditional AIC algorithm is deduced mathematically, and the original formula is transformed to get the arithmetic sum of discrete real number sequence and the linear combination form of square sum. The fast AIC algorithm (Fast-AIC algorithm) is obtained by reducing the repeated calculation. Compared with the traditional AIC method, the computational efficiency is more than 1000 times higher after 6500 sampling points. Based on the technical scheme studied in this paper, the method of picking up the first arrival of microseismic events and automatic identification based on Fast-AIC algorithm is programmed and realized. The reliability and accuracy of this method are tested and analyzed. At the same time, this method and several conventional methods are used to automatically pick up the first break of the actual hydraulic fracturing microseismic data in Shanxi, China. Compared with the results of manual picking, the absolute error of the picking result is smaller.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TE357.1;P631.4
【相似文獻】
相關期刊論文 前10條
1 趙向東;陳波;姜福興;;微地震工程應用研究[J];巖石力學與工程學報;2002年S2期
2 劉建中,王春耘,劉繼民,趙玉武,劉志鵬;用微地震法監(jiān)測油田生產動態(tài)[J];石油勘探與開發(fā);2004年02期
3 劉建安,馬紅星,慕立俊,邱筱琳;井下微地震裂縫測試技術在長慶油田的應用[J];油氣井測試;2005年02期
4 王亞娟;張華光;王成旺;劉利霞;鄧軍;胡淑娟;;利用微地震測繪和壓裂模擬分析進行水力裂縫增長動態(tài)研究[J];國外油田工程;2006年10期
5 周仲禮;王琪;殷靜;范譚廣;談偉敦;;用微地震發(fā)現高速巖性及識別油氣[J];吐哈油氣;2008年03期
6 黃今;蘇華友;盧國勝;杜林;范波峰;;采動過程中微地震定位方法研究[J];現代礦業(yè);2009年02期
7 黃克獻;李利立;劉軍芳;岳琳;楊啟明;;微地震地下影像技術在注水破裂監(jiān)測和剩余油分布研究中的應用[J];內蒙古石油化工;2009年14期
8 胡慶春;孟米;;基于大井距油氣田的微地震壓裂監(jiān)測技術研究[J];天然氣技術與經濟;2011年04期
9 張萬鵬;永野宏治;羅紹河;;基于倒頻譜解析法的近接型相似微地震對研究[J];中國測試;2012年04期
10 繆華祥;姜福興;宋雪娟;楊淑華;魏全德;;礦山微地震活動特征的概率分析方法研究[J];采礦與安全工程學報;2012年05期
相關會議論文 前4條
1 儲仿東;王永輝;李永平;衡峰;容嬌君;;微地震井中監(jiān)測技術在致密砂巖中的應用實例[A];中國地球物理2013——第十二專題論文集[C];2013年
2 余洋洋;梁春濤;楊宜海;;微地震監(jiān)測系統(tǒng)的設計[A];中國地球物理2013——第二十三專題論文集[C];2013年
3 張佩;張海江;M.Nafi Toksoz;;猶他州Cove Fort-Sulphurdale地區(qū)微地震震源機制研究與應用[A];2014年中國地球科學聯(lián)合學術年會——專題12:強震機理、孕育環(huán)境與地震活動性分析論文集[C];2014年
4 駱循;;礦山與大型地下工程災害監(jiān)測的微地震技術應用[A];中國地球物理學會第二十三屆年會論文集[C];2007年
相關重要報紙文章 前3條
1 特約記者 李銘 通訊員 彭樹禹;長慶井下首次實施微地震試驗成功[N];中國石油報;2009年
2 特約記者 林勇;勝利油田首次自主微地震壓裂監(jiān)測采集試驗成功[N];東營日報;2010年
3 記者 金江山 通訊員 王曉泉;井中微地震裂縫監(jiān)測技術獲重大突破[N];中國石油報;2013年
相關博士學位論文 前5條
1 江海宇;油田壓裂微地震地面監(jiān)測速度模型校正及定位研究[D];吉林大學;2016年
2 況文歡;結合地震學和地質力學對微地震數據的研究[D];中國科學技術大學;2015年
3 張喚蘭;微地震數值模擬及震源定位方法研究[D];西安科技大學;2014年
4 逄煥東;巖體微地震的模式、定位及其失穩(wěn)預報研究[D];山東科技大學;2004年
5 尹陳;微地震震源破裂特征研究及應用[D];成都理工大學;2017年
相關碩士學位論文 前10條
1 王超;微地震正演方法研究[D];長安大學;2015年
2 李亮;微地震信號自動檢測及震源掃描分割矩陣反演方法研究[D];長安大學;2015年
3 于子超;水力壓裂微地震信號提取與裂縫反演研究[D];長安大學;2015年
4 蔣騰飛;微地震數據去噪方法研究[D];長江大學;2015年
5 毛小波;基于PTP的多節(jié)點微地震數據懫集與傳輸技術研究[D];成都理工大學;2015年
6 屈敬翔;面向頁巖氣勘探的微地震采集記錄儀研制[D];中國海洋大學;2015年
7 田厚強;鄆城煤礦綜放采場微地震與應力特征研究及應用[D];安徽理工大學;2016年
8 王東鶴;基于射線理論的微地震速度模型校正方法研究[D];吉林大學;2016年
9 劉昕;基于高階累積量和Shearlet變換的微地震數據噪聲壓制研究[D];吉林大學;2016年
10 常凱;稀疏約束反演在微地震插值與成像中的應用[D];吉林大學;2016年
,本文編號:2184798
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2184798.html