喜馬拉雅造山帶中段亞東地區(qū)片麻巖的早古生代巖漿作用與新生代變質(zhì)作用
[Abstract]:The Yadong region is located in the middle part of the Himalayan orogenic belt, where the high Himalayan crystalline series is mainly composed of shaly schist, felsic gneiss and a small amount of quartzite, marble, mafic rock and calcium silicate. These rocks were invaded by large areas of pale granite. The petrology and zircon chronology of normal gneiss in this area have been studied in this paper. The normal gneiss studied is divided into two categories: the first is dark gneiss, the mineral composition is mainly quartz (30%), plagioclase (30%), potassium feldspar (20%), biotite (3 5%), and contains or does not contain a small amount of Muscovite and hornblende, and is mainly composed of quartz (30%), plagioclase (30%), potassium feldspar (20%), biotite (3%), and amphibolite. The results of petrochemical analysis showed that the Sio _ 2 content of the three dark gneisses was between 68.50 wt.%~76.55 wt.% and 13.22 wt.%~14.97 wt.%, and the total alkali content (Na2O K _ 2O) was between 5.64 wt.%~7.64 wt.% and 1.061.14, respectively. All of them are peraluminous. The three samples have high total REE content, rich in large ion lithophile elements such as RB ~ (+) K and high field strength elements such as Th ~ (3 +) Ta, and are poor in large ion lithophile elements, such as Ba-Sr and NB ~ (+) Ti, and in light-colored gneiss, the second is light-colored gneiss, and the other is light-colored gneiss. The mineral composition is mainly quartz (300.35%), plagioclase (2530%), potash feldspar (2530%), biotite (30.5%), or small amount of sillimanite. The Sio _ 2 content of the two light-colored gneiss is 77.83 wt.% and 75.19 wt.Al _ 2O _ 3 are 13.47 wt.% and 14.15 wt.t.The Cao is 0.31 wt.% and 0.60 wt. respectively, and the total alkali content (Na2O K2O) is 0.60 wt. The CNK values of 7.01 wt.% and 7.78 wt.% were 1.84 and 1.48, respectively, which were peraluminous, the total REE of the two samples was lower, It is rich in large ion lithophile elements such as RbBK, depleted in large ion lithophile elements such as Ba and Sr, and in high field strength elements such as Thn NbPTi. The zircon in the gneiss is mainly composed of a magmatic core and a narrow metamorphic edge. A small amount of zircon has no core-edge structure and is a single grain metamorphic zircon. The REE partition model in the core of zircon is characterized by the negative anomaly of rich HREE EU, and the metamorphic edge of zircon and the single grain metamorphic zircon have relatively low REE content and negative EU anomaly. The U-Pb chronological analysis of zircon shows that the weighted mean age of 478 鹵14Ma~507 鹵40Ma in the magmatic core of the five samples represents the early Paleozoic age of the gneiss. A Cenozoic age of 20.8 鹵1.8 Ma~22.8 鹵5.5 Ma has been obtained in the zircon metamorphic domain. The zircon HF isotopic analysis of the dark gneiss shows that the 蔚 Hf (t) values of the zircon core are 8.1 ~ 0.1, 5.9- and 4.86.7TDM2 respectively, and the ages of 1.441.96Ga 1.591.83 Ga and 1.03U 1.76Ga are much larger than the crystallization age of the sample. This indicates that they originated from partial melting of ancient continental crust material. The above data indicate that the studied dark gneiss is the product of the Cenozoic metamorphism of the early Paleozoic granite. The light-colored gneiss is the product of the deformation of the paleozoic granites formed by the deep melting of the early Paleozoic granites in the Cenozoic. This study shows that the norneiss in the Himalayan orogenic belt has a record of early Paleozoic orogeny, that is, the proto-Tethys ocean subducted to the northern margin of Gondwana continent. These normal gneisses also recorded Cenozoic metamorphic and deep melting events reflecting the collision orogeny of the Indo-Eurasian plate.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:P588.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱麗英;;早古生代高變質(zhì)藻煤的煤巖特征及其地質(zhì)意義[J];地質(zhì)論評;1983年03期
2 ;陜南早古生代煤性質(zhì)及成因的初步研究[J];煤田地質(zhì)與勘探;1975年05期
3 趙鳳游;;北祁連區(qū)早古生代生物地層研究的進(jìn)展[J];青藏高原地質(zhì)文集;1983年05期
4 高長林,黃澤光,葉德燎,劉光祥,吉讓壽,秦德余;中國早古生代三大古海洋及其對盆地的控制[J];石油實(shí)驗(yàn)地質(zhì);2005年05期
5 樓雄英,許效松;塔里木盆地早古生代晚期構(gòu)造-沉積響應(yīng)[J];沉積與特提斯地質(zhì);2004年03期
6 李佐臣;裴先治;劉戰(zhàn)慶;李瑞保;丁仨平;張曉飛;陳國超;劉智剛;陳有;王學(xué)良;;揚(yáng)子地塊西北緣后龍門山南華紀(jì)—早古生代沉積地層特征及其形成環(huán)境[J];地球科學(xué)與環(huán)境學(xué)報(bào);2011年02期
7 韓寶福,何國琦,吳泰然,李惠民;天山早古生代花崗巖鋯石U-Pb定年、巖石地球化學(xué)特征及其大地構(gòu)造意義[J];新疆地質(zhì);2004年01期
8 賈振遠(yuǎn),李志明,蔡忠賢;中國古大陸及其邊緣早古生代層序地層及海平面變化的基本特征[J];地球科學(xué);1997年05期
9 雒昆利,蘇文智,杜美利,雷福堯;南秦嶺早古生代石煤的微量元素[J];西安礦業(yè)學(xué)院學(xué)報(bào);1995年02期
10 蔡志慧;許志琴;段向東;李化啟;曹匯;黃學(xué)猛;;青藏高原東南緣滇西早古生代早期造山事件[J];巖石學(xué)報(bào);2013年06期
相關(guān)會(huì)議論文 前10條
1 劉豪;王英民;;塔里木盆地早古生代陸架坡折發(fā)育特征與演化初探[A];第八屆古地理學(xué)與沉積學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2004年
2 趙鳳游;;北祁連區(qū)早古生代生物地層研究的進(jìn)展[A];青藏高原地質(zhì)文集(2)——地層·古生物——青藏高原地質(zhì)科學(xué)討論會(huì)論文集(一)[C];1979年
3 周志毅;;西北地區(qū)早古生代地質(zhì)[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
4 周志毅;;西北地區(qū)早古生代地質(zhì)[A];中國古生物學(xué)會(huì)第21屆學(xué)術(shù)年會(huì)論文摘要集[C];2001年
5 秦秀峰;郭原生;汪巖;匡永生;劉旭光;周世強(qiáng);;大興安嶺北端漠河早古生代埃達(dá)克質(zhì)巖特征及其地質(zhì)意義[A];2006年全國巖石學(xué)與地球動(dòng)力學(xué)研討會(huì)論文摘要集[C];2006年
6 許志琴;楊經(jīng)綏;梁鳳華;劉福來;曾令森;戚學(xué)祥;陳松永;劉敦一;;泛非-早古生代造山事件與原始喜馬拉雅的形成[A];2004年全國巖石學(xué)與地球動(dòng)力學(xué)研討會(huì)論文摘要集[C];2004年
7 郭養(yǎng)和;;東南大陸早古生代古地理輪廓[A];中國地質(zhì)科學(xué)院南京地質(zhì)礦產(chǎn)研究所文集(50)[C];1991年
8 馬醒華;;華北早古生代巖石重磁化問題的巖石磁學(xué)實(shí)驗(yàn)研究[A];中國地質(zhì)科學(xué)院“九五”科技成果匯編[C];2001年
9 王金榮;吳繼承;湯中立;賈志磊;吳春俊;;北祁連造山帶東段早古生代構(gòu)造巖漿作用及成礦的研究[A];中國礦物巖石地球化學(xué)學(xué)會(huì)第11屆學(xué)術(shù)年會(huì)論文集[C];2007年
10 董順利;李忠;高劍;朱煉;;阿爾金—祁連—昆侖造山帶早古生代構(gòu)造格架及結(jié)晶巖年代學(xué)研究進(jìn)展[A];中國科學(xué)院地質(zhì)與地球物理研究所2013年度(第13屆)學(xué)術(shù)論文匯編——巖石圈演化研究室[C];2014年
相關(guān)博士學(xué)位論文 前4條
1 鄭寧;湘贛南部及粵北部早古生代沉積—構(gòu)造演化[D];中國地質(zhì)科學(xué)院;2012年
2 楊子江;新疆阿爾金紅柳溝一帶早古生代地質(zhì)構(gòu)造演化研究[D];中國地質(zhì)科學(xué)院;2012年
3 康磊;南阿爾金高壓—超高壓變質(zhì)帶早古生代多期花崗質(zhì)巖漿作用及其地質(zhì)意義[D];西北大學(xué);2014年
4 王興安;華北板塊北緣中段早古生代—泥盆紀(jì)構(gòu)造演化[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前8條
1 楊朝;全球早古生代造山帶:板塊重建與古大陸[D];中國海洋大學(xué);2015年
2 李濤;原特提斯北界西段早古生代構(gòu)造變形及微陸塊演化[D];中國海洋大學(xué);2015年
3 張喬;福建中部志留紀(jì)輝長巖和Ⅰ型花崗巖成因及構(gòu)造意義[D];南京大學(xué);2015年
4 周賓;柴北緣西段綠梁山一帶早古生代巖漿作用與成礦[D];中國地質(zhì)大學(xué)(北京);2013年
5 唐磊;喜馬拉雅造山帶中段亞東地區(qū)片麻巖的早古生代巖漿作用與新生代變質(zhì)作用[D];中國地質(zhì)大學(xué)(北京);2016年
6 李松彬;阿爾金北緣喀臘大灣地區(qū)早古生代構(gòu)造演化[D];中國地質(zhì)科學(xué)院;2013年
7 吳鵬;賀蘭山地區(qū)早古生代地層分區(qū)研究[D];中國海洋大學(xué);2013年
8 馮堅(jiān);伊春—延壽構(gòu)造帶早古生代構(gòu)造屬性研究[D];吉林大學(xué);2012年
,本文編號(hào):2159538
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2159538.html