井地電阻率成像2.5D正反演及其應(yīng)用研究
[Abstract]:Compared with the surface resistivity imaging technology, the well ground resistivity imaging technology puts the power supply electrode into the drilling. Because the electrode is close to the detecting object, it can excite stronger anomalies and produce greater potential difference in the surface receiving electrode. Its resolution is obviously superior to the surface device form. It is precisely because of these characteristics of well ground resistivity imaging that it has great development potential and application prospect in urban engineering exploration, deep hidden deposit exploration and the study of remaining oil distribution in high water-cut oil fields. This paper systematically summarizes the research history, application status and research results of well-ground resistivity imaging technology. On this basis, the 2D forward numerical model of the theoretical geoelectric model is studied by finite element method, and the regularization inversion method is used to carry out the inversion research, and good results are obtained. This paper is divided into six chapters. The first chapter, "introduction", mainly introduces the research background, significance, research status of resistivity imaging, inverse algorithm and the main research content of the paper. In the second chapter, "basic theory of borehole resistivity imaging", the differential equation and boundary condition of point source field potential in two-dimensional geoelectric section are introduced, and the formulas for calculating apparent resistivity under different conditions are listed. Chapter three, "forward theory of 2.5D finite element method for resistivity imaging of well ground", is one of the emphases of this paper. The two-dimensional forward modeling problem of borehole resistivity imaging is to solve the boundary value problem of two-dimensional electric section of point source field, and the differential equation and boundary condition of two-dimensional geoelectric section potential can be equivalent to the corresponding variational problem. The variational problem is the extreme value problem of functional, and it can be simplified as the extreme value problem of multivariate function, and the extreme value problem of multivariate function is well known. This is the basic idea of finite element method. The specific idea is that the field (potential) is actually three-dimensional for the two-dimensional geoelectric section of the point source, but the potential has symmetry in the extension direction of the two-dimensional object. Therefore, the three dimensional differential equation of potential can be transformed into two dimensional differential equation by cosine transform. The boundary value equation is simplified to the linear equation of multivariate function on the grid node by mesh division, and the Fourier potential is calculated. Finally, the potential can be calculated by inverse cosine transform. In chapter 4, "regularization inversion of well resistivity imaging 2.5D" is another important part of the paper. The basic principle of regularization inversion is introduced, and the selection of regularization factor and stability factor is discussed emphatically. In chapter 5, "Application of engineering example of 5 well resistivity imaging technology", several application examples and application results are introduced. The sixth chapter is the conclusion part, briefly describes the work results and the shortcomings in the work. In the work of this paper, a 2.5 D inversion program for well ground resistivity imaging is compiled with C language. In forward modeling, the inverse cosine transform uses the optimization method to solve the filtering coefficient with high accuracy, and the calculation method of regularization factor and the influence of the selection of stability factor on the inversion result are analyzed in detail. The accuracy and validity of the program are verified by the comparison of several regular geoelectric models. In the application of urban engineering exploration, good results have been obtained for geological hidden dangers such as caverns, fracture zones and water-rich zones in the working area. It can precisely divide the space position and the boundary of the detection object on the geoelectric section, which provides reliable technical support for the design and subsequent construction.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P631.322
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓波,劉家琦;離散牛頓正則化方法及應(yīng)用[J];計(jì)算物理;1993年03期
2 毛玉明;郭杏林;趙巖;呂洪彬;;基于精細(xì)計(jì)算的動(dòng)載荷反演問題正則化求解[J];動(dòng)力學(xué)與控制學(xué)報(bào);2009年04期
3 韓云瑞;正則化方法解線性方程的收斂速度[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1986年06期
4 肖庭延,齊忠濤;解二維卷積型積分方程的正則化方法[J];裝甲兵工程學(xué)院學(xué)報(bào);1996年02期
5 王登剛,劉迎曦,李守巨;二維穩(wěn)態(tài)導(dǎo)熱反問題的正則化解法[J];吉林大學(xué)自然科學(xué)學(xué)報(bào);2000年02期
6 杜華棟,黃思訓(xùn),石漢青;一維半地轉(zhuǎn)淺水模式反演的理論分析和數(shù)值試驗(yàn)[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);2004年01期
7 張瑞;李功勝;;求解病態(tài)問題的一種新的正則化子與正則化算法[J];工程數(shù)學(xué)學(xué)報(bào);2006年01期
8 顧勇為;歸慶明;張磊;;基于復(fù)共線性診斷的正則化方法[J];信息工程大學(xué)學(xué)報(bào);2007年04期
9 蔡傳寶;湯文成;;基于有限元法-正則化的彈性模量反求算法研究[J];應(yīng)用力學(xué)學(xué)報(bào);2009年01期
10 王彥飛;數(shù)值求解迭代Tikhonov正則化方法的一點(diǎn)注記[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;2002年03期
相關(guān)會(huì)議論文 前8條
1 楊元喜;徐天河;;綜合驗(yàn)前模型信息和驗(yàn)后觀測信息的自適應(yīng)正則化方法[A];《大地測量與地球動(dòng)力學(xué)進(jìn)展》論文集[C];2004年
2 解凱;呂妍昱;;一種高效的正則化參數(shù)估計(jì)算法[A];全國第19屆計(jì)算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(上冊)[C];2008年
3 蘇利敏;王耀威;王彥飛;;基于SAR特征的正則化計(jì)算方法及其在紋理分類中的應(yīng)用[A];第25屆中國控制會(huì)議論文集(下冊)[C];2006年
4 曹毅;呂英華;;基于微遺傳算法和正則化處理的模糊圖像復(fù)原方法[A];全國第13屆計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)(CAD/CG)學(xué)術(shù)會(huì)議論文集[C];2004年
5 周定法;薄亞明;;解電磁逆散射問題的截?cái)嗤耆钚《朔椒╗A];第七屆工業(yè)儀表與自動(dòng)化學(xué)術(shù)會(huì)議論文集[C];2006年
6 魏素花;王雙虎;許海波;;軸對稱物體X射線層析成像的正則化方法[A];全國射線數(shù)字成像與CT新技術(shù)研討會(huì)論文集[C];2012年
7 劉曉芳;徐文龍;陳永利;;基于非二次正則化的并行磁共振圖像保邊性重建[A];浙江生物醫(yī)學(xué)工程學(xué)會(huì)第九屆年會(huì)論文匯編[C];2011年
8 王金海;王琦;鄭羽;;基于L_1正則化和投影方法的電阻抗圖像重建算法[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第三十三屆學(xué)術(shù)年會(huì)論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 鐘敏;反問題多尺度迭代正則化方法[D];復(fù)旦大學(xué);2014年
2 產(chǎn)文;Web社區(qū)問答檢索的關(guān)鍵技術(shù)研究[D];復(fù)旦大學(xué);2014年
3 王靜;電阻抗成像的幾種正則化方法研究[D];哈爾濱工業(yè)大學(xué);2015年
4 李維;有限元方法和正則化策略在光學(xué)分子影像中的應(yīng)用[D];西安電子科技大學(xué);2015年
5 閆青;基于梯度正則化約束的圖像重建算法研究[D];上海交通大學(xué);2014年
6 方晟;基于正則化的高倍加速并行磁共振成像技術(shù)[D];清華大學(xué);2010年
7 肖銓武;基于核的正則化學(xué)習(xí)算法[D];中國科學(xué)技術(shù)大學(xué);2009年
8 薛暉;分類器設(shè)計(jì)中的正則化技術(shù)研究[D];南京航空航天大學(xué);2008年
9 王林軍;正則化方法及其在動(dòng)態(tài)載荷識別中的應(yīng)用[D];湖南大學(xué);2011年
10 吳頡爾;正則化方法及其在模型修正中的應(yīng)用[D];南京航空航天大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 焦彩紅;正則化夾角間隔核向量機(jī)[D];河北大學(xué);2015年
2 牛征驥;基于混合范數(shù)的電阻率反演算法研究[D];大連海事大學(xué);2015年
3 楊嬌;參數(shù)變化識別問題的稀疏約束正則化方法及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2015年
4 張衍敏;基于正則化的多分散系納米顆粒粒度反演優(yōu)化方法研究[D];齊魯工業(yè)大學(xué);2015年
5 吳瀚;對于使用Adaptive Lp正則化的線性回歸問題在高維情況下漸近性質(zhì)的討論[D];復(fù)旦大學(xué);2014年
6 余鉅東;正則化方法解決神經(jīng)網(wǎng)絡(luò)稀疏化問題[D];大連理工大學(xué);2015年
7 高路;基于Bregman的CT稀疏角度迭代重建研究[D];西安電子科技大學(xué);2014年
8 周陽權(quán);井地電阻率成像2.5D正反演及其應(yīng)用研究[D];東華理工大學(xué);2015年
9 董國志;反問題的正則化方法及其計(jì)算[D];湖南師范大學(xué);2012年
10 岳建惠;電阻率成像反問題的混合正則化方法研究[D];大連海事大學(xué);2012年
,本文編號:2155045
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2155045.html