碳酸鹽巖微觀儲層三維孔喉結(jié)構(gòu)的定量數(shù)值表征研究
本文選題:碳酸鹽巖儲層 + 孔喉結(jié)構(gòu); 參考:《中國地質(zhì)大學(xué)》2016年博士論文
【摘要】:海相碳酸鹽巖是十分重要的油氣儲層。但是,我國碳酸鹽巖儲層非均質(zhì)性強烈,特別是作為油氣儲集空間的孔-洞-逢,更是類型多樣,復(fù)雜多變。以四川盆地普光氣田飛仙關(guān)組鮞粒白云巖儲層為例,相同巖性的同一層段往往發(fā)育有鑄?、粒內(nèi)溶孔、粒間溶孔等。又如羅家寨氣田部分地區(qū)儲層一方面孔隙度雖然很高,達(dá)20%,滲透率卻僅為0.1×10-3μm2,甚至更低,屬于低滲-特低滲;另一方面,巖性、孔隙類型、孔隙度相同的情況下,滲透率卻相差數(shù)十倍,甚至百倍。不同的孔喉系統(tǒng)類型,孔隙的大小、幾何形態(tài)、喉道的結(jié)構(gòu)、孔喉的連通性和空間的延展性等有很大的差異,其對孔隙度、滲透率的貢獻和影響也大不相同。為此,需要新方法、新技術(shù)對復(fù)雜的碳酸鹽巖孔喉系統(tǒng)進行精細(xì)的刻畫和描述,定量表征其在三維空間上的展布、幾何形態(tài)、孔喉連通性等。三維高精度微納米CT及高性能圖形圖像處理技術(shù)的發(fā)展,為碳酸鹽巖微觀儲層的三維孔喉結(jié)構(gòu)定量表征提供了實現(xiàn)途徑和理論指導(dǎo)。結(jié)合CT技術(shù)和分形與多重分形理論,對碳酸鹽巖微觀儲層的三維孔喉結(jié)構(gòu)進行了深入的傳統(tǒng)幾何學(xué)參數(shù)表征和分形與多重分形分析,研究表明:1.基于高分辨率工業(yè)CT的技術(shù)方法能對碳酸鹽巖微觀儲層的三維孔喉結(jié)構(gòu)進行有效定量表征和孔喉結(jié)構(gòu)的精細(xì)刻畫;2.碳酸鹽巖儲層的孔隙和喉道三維結(jié)構(gòu)具有分形與多重分形特征。進一步,文章以Choquette和Pray (1970)、Lucia (1983)等經(jīng)典的碳酸鹽巖儲集空間分類為前提,分別對孔隙型、孔洞型和裂縫型儲層進行了分類表征與分析,結(jié)果如下:1.孔隙型碳酸鹽巖中,粒間孔和晶間孔孔隙形狀多為三角形,三維空間上表現(xiàn)為放射狀,孔隙相對細(xì)長,喉道發(fā)育,連通性較好;鑄?缀透嗄?卓紫缎螤钜(guī)整,二維平面上表現(xiàn)為圓形,三維空間上近似球體,此類樣品往往孔隙度較為發(fā)育,但是孔喉系統(tǒng)連通性差,滲透率差;藻格架孔和混合孔(發(fā)育多種孔隙)孔隙和喉道非均質(zhì)性較強,受巖石組構(gòu)特征影響顯著;溶蝕孔隙非均質(zhì)性強,孔隙的發(fā)育程度受后期的成巖作用、溶蝕作用影響,其孔隙形狀多為港灣狀,喉道與溶蝕強度相關(guān);2.溶蝕孔洞型碳酸鹽巖儲層分為分散型和連通性,分散型溶蝕孔洞提供了儲層的主要儲集空間,但是孔洞孤立、形狀大小不均;連通性孔洞系統(tǒng)孔洞為主要的儲集空間,溝通的喉道主要為“溶縫、裂縫、基質(zhì)孔”,特別是基質(zhì)孔不僅可以溝通各自孤立的孔洞,還可以作為主要的儲集空間,儲集石油和天然氣。3.裂縫的儲集空間較小,空間延伸較長,與各自平面的夾角各異,如果儲層有多條裂縫,則相互交錯,切割。4.三維孔隙分維數(shù)、雙對數(shù)下分配函數(shù)、質(zhì)量指數(shù)函數(shù)等顯示碳酸鹽巖微觀儲層三維孔喉結(jié)構(gòu)具有分形與多重分形特征多重分形頻譜曲線的左側(cè)能很好地反映較大孔隙的分異程度,而右側(cè)多反映較小孔隙的分異程度;非對稱指數(shù)R能刻畫大、小孔隙相對分異的程度,也是曲線是否對稱的定量表征;對于粒間孔樣品LJ1-1的孔隙空間多重分形頻譜為右偏,非對稱指數(shù)R小于0,△αL明顯小于ΔαR,頻譜寬度△α值大,具有極強的多重分形特征,與其較大的孔隙度和特高的滲透率有一定的對應(yīng)關(guān)系。晶間孔樣品具有較小的△α值和較小的孔隙度和滲透率值,ΔαL與ΔαR值相差不大,非對稱指數(shù)R接近0,顯示空間上大、小孔隙的分異不明顯。4.盒子維數(shù)是反映形狀規(guī)則度的函數(shù),對不同的孔隙類型有明確的響應(yīng),如二維系列圖片的盒子維數(shù)值相對大小為:鑄?琢ig孔晶間孔混合孔。具體表現(xiàn)為:晶間孔ZG9值為1.58~1.67,均值為1.648;粒間孔LJ1-1值為1.66~1.72,均值為1.691;鑄?椎腖J5值為1.73~1.88,均值為1.757~混合孔的LJ2-2值為1.53~1.61,均值為1.563?紫缎螤钤揭(guī)整則盒子維數(shù)函數(shù)值越大,如二維圓形的盒子維數(shù)為2,三維球體的盒子維數(shù)為3。均值最大的LJ5樣品鑄?装l(fā)育,而鑄?卓紫缎螤钶^為規(guī)整,近圓形分布;均值最小的LJ2-2為混合孔發(fā)育樣品,其孔隙類型較多,有粒間孔、粒間溶孔、鑄?缀途чg孔等,因此其對應(yīng)的盒子維數(shù)僅為1.563。在上述三維盒子維數(shù)分析中,LJ5樣品的盒子維數(shù)值也較高,達(dá)2.7834,接近球體形態(tài)。從盒子維數(shù)與孔隙度、滲透率的數(shù)據(jù)對比可以發(fā)現(xiàn),即孔隙度可能也對盒子維數(shù)產(chǎn)生影響。基于CT掃描數(shù)據(jù),文章通過顆粒識別法、VTK平臺的體繪制法、種子充填法,并結(jié)合常規(guī)幾何學(xué)、分形與多重分形等方法理論的系統(tǒng)研究,提煉了孔喉體積、連通體積比、孔隙和喉道半徑、最大/小值、形狀因子、連通性、裂縫寬度(開度)、延伸長度、裂縫夾角、盒子維數(shù)、多重分形的寬度Δα、非對稱指數(shù)R、質(zhì)量函數(shù)τ(q)、多重分形譜函數(shù)f(α)等30余個表征參數(shù)。
[Abstract]:Marine carbonate rock is a very important reservoir of oil and gas. However, the heterogeneity of carbonate reservoirs in China is very strong, especially in the hole and hole of oil and gas reservoir space. It is more diverse and complex and changeable. Taking the oolitic dolomite reservoir of the Feixianguan Formation of the Puguang gas field in Sichuan basin as an example, the same layer of the same lithology often develops the mold hole. In some areas of the Luo Jia Zhai gas field, although the porosity of the reservoir is very high, up to 20%, the permeability is only 0.1 x 10-3 Mu m2, or even lower, which belongs to low permeability and ultra-low permeability. On the other hand, the lithology, pore type and porosity are the same, the permeability is a difference of several times and even a hundred times. Different pore throat systems. Type, pore size, geometry, structure of throat, connectivity of pore throat and space extension are very different, and their contribution and influence on porosity and permeability are very different. Therefore, new methods are needed. New techniques are used to describe and describe the complex carbonate pore throat system in a quantitative way. The development of three-dimensional high precision micro nano CT and high performance graphic image processing technology provides a way and theoretical guidance for the quantitative characterization of three dimensional pore throat structure of carbonate micro reservoirs. Combined with the theory of CT and fractal and multifractal, the three-dimensional reservoir of carbonate rocks is three-dimensional. The pore throat structure is characterized by deep traditional geometric parameters and fractal and multifractal analysis. The study shows that 1. based on the high resolution industrial CT technology, the three-dimensional pore throat structure of the carbonate micro reservoir can be effectively quantified and the pore throat structure is fine depicted; 2. the pore of the carbonate reservoir and the three-dimensional throat are three-dimensional. The structure is characterized by fractal and multifractal. Further, the classification of pore type, pore type and fractured reservoir is classified and characterized on the premise of Choquette and Pray (1970), Lucia (1983) and other classical carbonate reservoir space. The results are as follows: 1. pore shape carbonate rock, the pore shape of intergranular Kong Hejing pore Most of them are triangle, three-dimensional space is radiated, pore is relatively long, throat development, connectivity is good, mold hole and paste hole pore shape is regular, the two-dimensional plane is round, three-dimensional space is similar to the sphere, such samples tend to be more porosity, but the pore throat system connectivity is poor, the permeability difference; algal frame hole The heterogeneity of pore and larynx of mixed pore (developing multiple pores) is strong, and it is strongly influenced by the characteristics of rock fabric. The heterogeneity of the pore is strong, the development degree of pore is affected by late diagenesis and corrosion, the pore shape is mostly harbor shape, the throat is related to the dissolution strength, and the 2. karst cave type carbonate reservoir is divided into two types. Dispersion type and connectivity, dispersed corrosion hole provides the main storage space of the reservoir, but the hole is isolated and the shape is not uniform, the hole in the connected hole system is the main reservoir space, the communication throat is mainly "dissolve, crack, matrix hole", especially the matrix hole can not only communicate the isolated hole, but also can be used as the reservoir. In the main reservoir space, the reservoir space of the reservoir oil and gas.3. cracks is small, the space extends long and the angle of each plane is different. If there are many cracks in the reservoir, it interlaced each other, cutting.4. three-dimensional pore fractal dimension, double logarithmic distribution function and mass index function, showing the three-dimensional pore throat structure of the carbonate micro reservoir. The left side of the multifractal spectrum curve with fractal and multifractal features can well reflect the degree of differentiation of the larger pores, while the right side reflects the degree of the smaller pores. The asymmetric index R can describe the degree of large, small pore relative differentiation, and is also a definite characterization of the symmetry of the curve; for the sample of intergranular pore LJ1-1, Kong Xikong The multifractal spectrum is right deviation, the asymmetric index R is less than 0, the delta alpha L is obviously smaller than the delta alpha R, the spectrum width delta alpha value is large and has a very strong multifractal feature. It has a certain corresponding relationship with the larger porosity and high permeability. The intergranular pore samples have smaller delta alpha value and smaller porosity and permeability values, Delta L and delta R values. The difference is small, the asymmetric index R is close to 0, which shows that the space is large and the fractal dimension of the small pores is not obvious. The.4. box dimension is a function of reflecting the shape rule degree, and it has a clear response to the different pore types. For example, the relative size of the box dimension value of the two-dimensional series of pictures is: the intergranular pore mixed hole in the intergranular pore of the mold. The specific expression is the intergranular pore ZG9 The value is 1.58 to 1.67, the mean value is 1.648, the LJ1-1 value of the intergranular pore is 1.66 ~ 1.72, the mean value is 1.691, the LJ5 value of the mold hole is 1.73 to 1.88, the value of the mean value is 1.757 to the mixed hole is 1.53 ~ 1.61. The more regular the mean of the pore shape is 1.563., the larger the box dimension function is, such as the dimension of the two-dimensional circular box is 2, and the box dimension of the three-dimensional sphere The mold hole of the LJ5 sample with the largest 3. mean value is developed, and the pore shape of the mold hole is relatively regular and near circular, and the LJ2-2 of the minimum mean value is the mixed hole development sample. The pore type is more, there are intergranular pore, intergranular hole, and the mould Kong Hejing hole and so on, so the corresponding box dimension is only 1.563. in the above three dimensional box dimension analysis, LJ The box dimension of 5 samples is also higher, reaching 2.7834, approaching the shape of the sphere. From the comparison of the box dimension and porosity and permeability data, it is found that the porosity may also affect the box dimension. Based on the CT scanning data, the article through the particle recognition, the body drawing method of the VTK platform, the seed filling method, and the fractal geometry, fractal Systematic research on the theory of multifractal and other methods, the volume of pore throat volume, connected volume ratio, pore and throat radius, maximum / small value, shape factor, connectedness, crack width (opening), extension length, crack angle, box dimension, multifractal width Delta, asymmetric index R, mass function tau (Q), multifractal spectrum function f (alpha), etc. are more than 30 Characterization parameters.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:P618.13
【相似文獻】
相關(guān)期刊論文 前10條
1 時宇;楊正明;黃延章;;儲層流動孔喉下限研究[J];西南石油大學(xué)學(xué)報(自然科學(xué)版);2009年06期
2 葉玨男;唐洪明;吳小剛;王自力;王瀅;;儲層孔喉結(jié)構(gòu)參數(shù)與懸浮物粒徑匹配關(guān)系[J];油氣地質(zhì)與采收率;2009年06期
3 陳萍;陶果;董明哲;孫華峰;;巖石孔喉道中表面粗糙度對油水兩相流動的影響[J];地球物理學(xué)進展;2013年02期
4 李果年;郝巍;張俊;;對孔喉直徑均值計算的一點探討[J];吐哈油氣;1999年02期
5 郭德運;趙靖舟;王延玲;龐雯;;鄂爾多斯盆地甘谷驛油田上三疊統(tǒng)長6油層孔喉結(jié)構(gòu)特征及其影響因素[J];西安石油大學(xué)學(xué)報(自然科學(xué)版);2006年01期
6 朱懷江;劉強;沈平平;羅健輝;楊靜波;劉玉章;;聚合物分子尺寸與油藏孔喉的配伍性[J];石油勘探與開發(fā);2006年05期
7 賈曉飛;雷光倫;尹金煥;姚傳進;吳川;李文忠;;孔喉尺度彈性調(diào)驅(qū)微球與儲層匹配關(guān)系理論研究[J];石油鉆探技術(shù);2011年04期
8 柴智;師永民;徐常勝;張玉廣;李宏;吳文娟;徐洪波;王磊;;人造巖芯孔喉結(jié)構(gòu)的恒速壓汞法評價[J];北京大學(xué)學(xué)報(自然科學(xué)版);2012年05期
9 劉堂宴,馬在田,傅容珊;核磁共振譜的巖石孔喉結(jié)構(gòu)分析[J];地球物理學(xué)進展;2003年04期
10 蒲秀剛;吳永平;周建生;廖前進;肖敦清;柳颯;;低滲油氣儲層孔喉的分形結(jié)構(gòu)與物性評價新參數(shù)[J];天然氣工業(yè);2005年12期
相關(guān)會議論文 前2條
1 劉易非;范耀;;特低滲透油田孔喉結(jié)構(gòu)對注水開發(fā)效果的影響[A];第九屆全國滲流力學(xué)學(xué)術(shù)討論會論文集(二)[C];2007年
2 張?zhí)旄?壽建峰;鄭興平;佘敏;潘立銀;;川東北下三疊統(tǒng)飛仙關(guān)組鮞粒白云巖孔喉的空間展布與刻畫[A];白云巖成因及油氣儲集層研討會論文集(續(xù))[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 戎虎仁;下組煤底板巖石滲透特性及微觀機理研究[D];中國礦業(yè)大學(xué);2015年
2 張?zhí)旄?碳酸鹽巖微觀儲層三維孔喉結(jié)構(gòu)的定量數(shù)值表征研究[D];中國地質(zhì)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前4條
1 任穎惠;華慶地區(qū)長6_3儲層構(gòu)型表征及孔喉特征分析[D];西安石油大學(xué);2015年
2 李東濤;低滲透儲層微觀孔喉結(jié)構(gòu)精細(xì)刻畫及量化表征[D];中國石油大學(xué)(華東);2014年
3 彭宇慧;蘇里格致密砂巖儲層孔喉結(jié)構(gòu)與氣、水滲流特征[D];長江大學(xué);2016年
4 丁先運;大慶F油層巖石孔隙結(jié)構(gòu)特征及對滲流影響[D];東北石油大學(xué);2013年
,本文編號:2067703
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2067703.html