榆神礦區(qū)導(dǎo)水裂隙帶發(fā)育規(guī)律研究
本文選題:榆神礦區(qū) + 導(dǎo)水裂隙帶 ; 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:本文以榆神礦區(qū)區(qū)域地質(zhì)資料為依據(jù),總結(jié)了榆神礦區(qū)煤層與含(隔)水層空間組合類型。采用鉆孔探測(cè)、經(jīng)驗(yàn)公式及數(shù)值模擬三種方法研究研究區(qū)導(dǎo)水裂隙帶發(fā)育高度(以下簡(jiǎn)稱“導(dǎo)高”),通過(guò)對(duì)比分析發(fā)現(xiàn),經(jīng)驗(yàn)公式計(jì)算得出的導(dǎo)高與現(xiàn)場(chǎng)實(shí)測(cè)測(cè)出的導(dǎo)高有一定的差距。由于采用經(jīng)驗(yàn)公式法計(jì)算時(shí)考慮的因素不夠全面,導(dǎo)致計(jì)算結(jié)果誤差較大,經(jīng)驗(yàn)公式在研究區(qū)具有一定的局限性。數(shù)值模擬得出的導(dǎo)高結(jié)果比經(jīng)驗(yàn)公式法計(jì)算得出的結(jié)果更加接近現(xiàn)場(chǎng)實(shí)測(cè)結(jié)果,數(shù)值模擬方法優(yōu)于經(jīng)驗(yàn)公式法,而且耗費(fèi)時(shí)間短、費(fèi)用低。鉆孔探測(cè)法在這三種方法中最為準(zhǔn)確,但是耗費(fèi)時(shí)間長(zhǎng)、費(fèi)用太高。綜合分析可知數(shù)值模擬方法是可靠可行經(jīng)濟(jì)實(shí)用的。采用三維數(shù)值模擬方法,根據(jù)塑性條件、破壞準(zhǔn)則及應(yīng)力判別,模擬出不同含(隔)水層空間組合類型和不同采厚以及不同工作面長(zhǎng)度下的導(dǎo)高,總結(jié)出不同影響因素與導(dǎo)高及裂采比的相關(guān)關(guān)系。應(yīng)用數(shù)值模擬方法預(yù)測(cè)出研究區(qū)導(dǎo)高,歸納總結(jié)出研究區(qū)導(dǎo)水裂隙帶發(fā)育規(guī)律。具體取得如下研究成果:(1)統(tǒng)計(jì)當(dāng)煤層采厚5m時(shí),不同的煤層-含(隔)水層空間組合類型區(qū)域的裂采比具有一定的差異:砂土基型區(qū)域裂采比26.45,砂基型區(qū)域裂采比27.86,基巖型區(qū)域裂采比19.67,土基型區(qū)域裂采比24.63,燒變巖型區(qū)域裂采比22.34。砂基型(隆德,27.86)的裂采比數(shù)值較大,而基巖型(薛廟灘,19.67)裂采比數(shù)值較小。導(dǎo)水裂隙帶高度隨著含砂量增大而增大,隨著基巖含量的增大而減小。(2)對(duì)數(shù)值模擬方法與鉆孔探測(cè)法、經(jīng)驗(yàn)公式法的導(dǎo)水裂隙帶發(fā)育高度計(jì)算結(jié)果進(jìn)行了對(duì)比分析,得出數(shù)值模擬方法是可靠可行經(jīng)濟(jì)實(shí)用的(3)研究區(qū)范圍內(nèi)不同煤層采厚及不同工作面條件下導(dǎo)水裂隙帶發(fā)育規(guī)律如下:煤層采厚與導(dǎo)高呈正相關(guān)關(guān)系,煤層采厚在3.5m~5m時(shí),裂采比最大。煤層導(dǎo)高及裂采比隨著工作面的增大而減小。(4)研究區(qū)四期規(guī)劃區(qū)的導(dǎo)高發(fā)育規(guī)律:研究區(qū)四期規(guī)劃區(qū)導(dǎo)高主要分布在40~160m范圍內(nèi),規(guī)劃區(qū)西南部導(dǎo)高最大,可達(dá)200m以上。(5)研究區(qū)導(dǎo)水裂隙帶危險(xiǎn)性分為安全區(qū)和危險(xiǎn)區(qū)兩類,安全區(qū)內(nèi)導(dǎo)水裂隙帶未突破首采煤層上覆基巖,分布在三期、四期的全區(qū),二期中南部以及一期西南部局地;危險(xiǎn)區(qū)內(nèi)導(dǎo)水裂隙帶突破首采煤層上覆基巖,集中在一期大部及二期的北部、東部。
[Abstract]:Based on the regional geological data of Yushen mining area, this paper summarizes the spatial combination types of coal seam and water-bearing layer in Yushen mining area. By means of borehole exploration, empirical formula and numerical simulation, the development height of water-conducting fracture zone in the area is studied (hereinafter referred to as "conducting height"), and it is found by comparison and analysis, There is a certain gap between the calculated conductance height obtained by empirical formula and that measured in situ. Because the factors taken into account in the calculation by empirical formula method are not comprehensive enough, the error of calculation results is large, and the empirical formula has some limitations in the study area. The results obtained by numerical simulation are closer to the measured results compared with those calculated by empirical formula method. The numerical simulation method is superior to the empirical formula method and has the advantages of short time consumption and low cost. Borehole detection is the most accurate of the three methods, but time-consuming and expensive. Comprehensive analysis shows that the numerical simulation method is reliable, feasible, economical and practical. According to plastic condition, failure criterion and stress discrimination, the three dimensional numerical simulation method is used to simulate the different spatial combination types and mining thickness of different water layers, as well as the guiding heights under different working face lengths. The correlation between different influencing factors and conductance height and fracture-production ratio was summarized. Numerical simulation method is used to predict the conductivity of the study area, and the law of the development of the fracture zone of the study area is summarized. The main results are as follows: (1) when the coal seam is 5 m thick, There are some differences in the fracture-mining ratio of different types of spatial assemblages between coal seams and water-bearing beds: 26.45 in the sandy soil type, 27.86 in the sand base, 19.67 in the bedrock, 24.63 in the soil-base, and 24.63 in the soil-based zone. The regional fracture-mining ratio of metamorphic rock type is 22.34. The fracture-production ratio of the sand base type (Londou 27.86) is larger than that of the bedrock type (Xue Miao Tan (19.67). The height of the water-conducting fracture zone increases with the increase of sand content and decreases with the increase of the bedrock content. (2) the calculation results of the height of the water-conducting fissure zone by the numerical simulation method, the borehole detection method and the empirical formula method are compared and analyzed. It is concluded that the numerical simulation method is reliable, feasible, economical and practical. (3) in the study area, the development law of the fracture zone in different coal seam mining thickness and different working face is as follows: the coal seam mining thickness is positively correlated with the guiding height, and the coal seam mining thickness is in 3.5m~5m. The ratio of split to mining is the largest. The height of coal seam and the ratio of coal seam to coal face decrease with the increase of working face. (4) the law of the development of guiding height in the fourth stage planning area of the study area: the leading height of the fourth stage planning area of the study area is mainly distributed in the range of 40 ~ 160 m, and that of the southwest part of the planning area is the largest. (5) the risk of water diversion fissure zone in the study area can be divided into two categories: safe area and dangerous area. The water conduction fissure zone in the safety zone does not break through the overburden rock of the first mining seam, and is distributed in the whole area of the third, fourth, the second, the central and the southwest of the study area. In the dangerous area, the water conduction fissure zone breaks through the overlying bedrock of the first mining coal seam, and is concentrated in the north and east of the first most and second stage of the coal seam.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD163.1;P641.461
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范立民;;保水開采是礦山地質(zhì)環(huán)境保護(hù)的基礎(chǔ)[J];水文地質(zhì)工程地質(zhì);2015年01期
2 許武;夏玉成;杜榮軍;王悅;;導(dǎo)水裂隙帶預(yù)計(jì)經(jīng)驗(yàn)公式的“三性”探究[J];礦業(yè)研究與開發(fā);2013年06期
3 胡小娟;李文平;曹丁濤;劉滿才;;綜采導(dǎo)水裂隙帶多因素影響指標(biāo)研究與高度預(yù)計(jì)[J];煤炭學(xué)報(bào);2012年04期
4 賀桂成;肖富國(guó);張志軍;丁德馨;;康家灣礦含水層下采場(chǎng)導(dǎo)水裂隙帶發(fā)育高度預(yù)測(cè)[J];采礦與安全工程學(xué)報(bào);2011年01期
5 黃慶享;張文忠;侯志成;;固液耦合試驗(yàn)隔水層相似材料的研究[J];巖石力學(xué)與工程學(xué)報(bào);2010年S1期
6 安泰龍;王連國(guó);浦海;姚邦華;;淺埋煤層導(dǎo)水裂隙帶發(fā)育規(guī)律的數(shù)值模擬研究[J];礦業(yè)研究與開發(fā);2010年01期
7 馬亞杰;武強(qiáng);章之燕;洪益清;郭立穩(wěn);田洪勝;張麗閣;;煤層開采頂板導(dǎo)水裂隙帶高度預(yù)測(cè)研究[J];煤炭科學(xué)技術(shù);2008年05期
8 劉增輝;楊本水;;利用數(shù)值模擬方法確定導(dǎo)水裂隙帶發(fā)育高度[J];礦業(yè)安全與環(huán)保;2006年05期
9 陳榮華;白海波;馮梅梅;;綜放面覆巖導(dǎo)水裂隙帶高度的確定[J];采礦與安全工程學(xué)報(bào);2006年02期
10 范立民;論保水采煤?jiǎn)栴}[J];煤田地質(zhì)與勘探;2005年05期
相關(guān)碩士學(xué)位論文 前2條
1 卞惠瑛;煤炭開采對(duì)水源保護(hù)區(qū)影響的數(shù)值模擬研究以榆神礦區(qū)三期規(guī)劃區(qū)為例[D];長(zhǎng)安大學(xué);2014年
2 楊貴;綜放開采導(dǎo)水裂隙帶高度及預(yù)測(cè)方法研究[D];山東科技大學(xué);2004年
,本文編號(hào):2066435
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2066435.html