彰武盆地早白堊世沉積體系與構造控制
本文選題:彰武盆地 + 早白堊世。 參考:《吉林大學》2016年博士論文
【摘要】:松南早白堊世斷陷盆地群是潛力較大的勘探新區(qū),彰武盆地作為其中的典型代表,滾動開發(fā)已經(jīng)展開。鉆井與試油結果表明,彰武盆地滿盆含油,但只有X2和X8兩個井區(qū)達到工業(yè)油流標準,并穩(wěn)定投產(chǎn),而在盆地其他部位,僅見油氣顯示,但并未發(fā)現(xiàn)成規(guī)模的油氣藏。彰武盆地油氣產(chǎn)區(qū)位于盆地X2-X8一線NNW走向的斜向低隆之上。研究盆內低隆如何產(chǎn)生,盆內沉積體系如何展布,以及盆地如何演化成為研究彰武盆地亟待解決的重要問題之一。解決這些問題,不僅可為盆地內進一步勘探開發(fā)提供參考,對其周緣斷陷盆地的勘探開發(fā)同樣具有借鑒價值。本文以整個彰武盆地為研究區(qū),以下白堊統(tǒng)九佛堂組、沙海組為目的層,開展沉積體系與構造控制研究。根據(jù)地震剖面的地質解釋確定盆地斷裂和地層發(fā)育狀況,研究盆地構造樣式,并運用平衡剖面原理,繪制盆地構造發(fā)育史剖面,恢復盆地充填過程和構造演化,同時對盆地發(fā)育機制進行探討;跍y井曲線、錄井巖性、巖心等資料通過標準層控制下的旋回對比和分級控制的方法進行全盆砂組劃分對比,建立層序地層格架,總結層序發(fā)育模式。確定沉積體系的平面展布,建立沉積相模式。從地層發(fā)育、沉積體系、成藏作用三個方面研究構造-火山作用對于盆地的控制作用。一、盆地構造特征和演化彰武盆地整體為東斷西超的箕狀盆地,東部為陡坡,西部為緩坡。斷裂F1為控盆斷裂,為犁式正斷層,頂部較陡向下變緩。斷裂F2、F3在伸展同時,伴隨扭動作用,屬調節(jié)斷層。九佛堂組和沙海組時期,盆地經(jīng)歷了伸展階段和扭轉階段兩個階段。伸展階段包括拉張伸展期(相當于九佛堂組下段沉積期)、轉換伸展期(相當于九佛堂組上段沉積期)、構造反轉期(九佛堂組沉積期末)。扭轉階段包括轉換伸展期(相當于沙海組下段沉積期)、萎縮反轉期(相當于沙海組上段沉積期)。盆內最重要的低凸起即X2-X8凸起是由于盆地右旋扭動產(chǎn)生的擠壓應力場造成的,這一凸起帶是整個盆地的油氣有利區(qū)。二、層序地層格架確定地層發(fā)育完整的井作為標準井。依據(jù)測井標準曲線和綜合錄井,對標準井含油層系進行砂組劃分。在標準井砂組劃分后,優(yōu)選標準層段,建立典型剖面,開展標準井統(tǒng)層。建立過標準井的骨干剖面網(wǎng),從標準井出發(fā),采取鄰井對比,井點輻射,逐步蔓延,統(tǒng)一閉合,劃分全區(qū)的地層。識別層序界面,建立了層序地層格架,九佛堂組和沙海組共劃分了13個三級層序,4個二級層序。4個二級層序(超層序)相當于九佛堂組下段、九佛堂組上段、沙海組下段和沙海組上段。13個三級層序分別相當于九7-九1砂組的7個層序,沙5、沙4-沙3、沙2的3個層序,沙1-1、沙1-2、沙1-3的3個層序。據(jù)此建立盆地層序模式共5種8型。包括受正拉張伸展構造控制的“粗-細-粗對稱”和受斜張走滑控制的“細-粗-細偏對稱”的陡坡型;受正拉張伸展構造控制的“粗-細非對稱”和受斜張走滑控制的“細-粗-細對稱”的緩坡型;受正或斜拉張構造控制的“細夾粗”的深水型;受正拉張伸展構造控制的“細-粗-細”的深槽型;受斜張走滑構造控制的“細-粗-細”的臺灘型。三、物源-沉積體系識別出彰武盆地的巖石類型,四類、十五亞類、二十次亞類和47類基本類型。4大類包括陸源碎屑巖大類、火山熔巖大類、火山碎屑巖大類和侵入巖(脈巖)大類。十五亞類包括礫巖、砂巖、灰?guī)r等,二十次亞類包括安山玄武巖、玄武巖等,47類基本類型包括復成分礫巖、砂礫巖等。識別出彰武盆地的沉積相(相、亞相和微相)類型,四相、十亞相、二十微相。四相分別是湖泊相、扇三角洲相、三角洲相和火山巖相,十亞相包括淺湖、半深湖、水下扇等,二十微相包括濁流、靜水泥、水下河道等。沉積體系包括東部沉積體系、西部沉積體系、西南沉積體系、東北沉積體系等。其中,主要沉積體系為東部沉積體系和西部沉積體系。東部為火山物源-扇三角洲物源-沉積體系,西部為火山-風化物源-辮狀河三角洲沉積體系。四、構造控制伸展扭動構造機制下的構造沉降導致相對湖平面變化,并由此控制層序發(fā)育,特別表現(xiàn)在水進期盆地中部有大規(guī)模沉積物進積。隨構造活動伴生的火山作用既提供了大量的沉積物,并使得盆地東部物源和西部物源產(chǎn)生差異。同期發(fā)育的同生凸起和兩側深凹陷提供了深湖的油頁巖和沼澤的煤層兩種烴源巖。構造作用產(chǎn)生的X2—X8低凸起與兩側生油凹陷一起,構成了近源組合,利于油氣藏的形成,使得X2—X8一帶成為成藏有利區(qū)。
[Abstract]:The early Cretaceous fault basin group in southern Songliao basin is a new exploration area with great potential. As a typical representative of the Zhangwu basin, the rolling development has been carried out. The results of drilling and oil test show that the Zhangwu basin is filled with oil, but only the two wells in the X2 and X8 wells reach the standard of industrial oil flow, and the oil and gas show only in other parts of the basin, but in other parts of the basin, only oil and gas display, but the other parts of the basin are shown only by oil and gas display, but the other parts of the basin are shown only by oil and gas display. The oil and gas reservoirs in Zhangwu basin are not found. The oil and gas producing areas in the Zhangwu basin are located above the oblique low uplift of the NNW direction of the front line of the basin. It is one of the important problems to study how the low uplift of the basin is produced, how the sedimentary system is distributed in the basin and how the basin evolves to be one of the important problems to be solved in the Zhangwu basin. One step of exploration and development provides reference and is of reference value for the exploration and development of its circumference faulted basin. This paper takes the whole Zhangwu basin as the study area, the following nine Buddha Hall formation in the Cretaceous and the Sha Hai formation as the purpose layer, to carry out the study of the sedimentary system and structure control. The structural style of the basin is studied, and the balance section principle is used to draw the tectonic development history section of the basin, to restore the filling process and structural evolution of the basin, and to discuss the mechanism of the basin development. Based on the logging curve, logging lithology, core and other data, the whole basin sand group is carried out through the method of cycle contrast and classification control under the control of standard layer. It establishes the sequence stratigraphic framework, summarizes the sequence development pattern, determines the plane distribution of the depositional system and establishes the sedimentary facies model, and studies the control effect of the tectonic volcanism on the basin from three aspects of formation development, depositional system and reservoir formation. One, the basin tectonic characteristics and evolution of Zhangwu Basin are the skip like basins of the East fault West. In the East, the East is a steep slope and the west is a gentle slope. The fault F1 is a control Basin fault, it is a plow type fault, and the top is steeply downward. The fracture is F2, F3 is extended at the same time, and is associated with the adjustment fault. The basin experienced two stages of stretching and twisting stages during the period of nine and Sha Hai formation. The extension stage includes the extension period (equivalent to nine). The transformation extension period (equivalent to the upper part of the nine fo Tang formation) and the tectonic inversion period (the end of the nine Buddhist temple sedimentary period). The reverse phase includes the transition extension period (equivalent to the lower section of the Sha Hai formation) and the atrophy reversal period (equivalent to the upper part of the Sha Hai Group). The most important low uplift in the basin is the X2-X8 uplift. The extrusion stress field produced by dextral twisting is caused by the stress field of the whole basin. Two, the sequence stratigraphic framework determines the well developed well as the standard well. According to the standard logging curve and comprehensive logging, the sand group in the standard well is divided. After the standard well sand group is divided, the standard level section is selected and established. Typical profile, standard well formation, established standard well backbone section network, starting from standard wells, adopting adjacent well contrast, well point radiation, gradual spread, unified closure, division of whole area formation, identification of sequence interface, sequence stratigraphic framework, nine fo Tang formation and Sha Hai formation, 13 three order sequences and 4 grade two sequence.4 two levels The sequence (super sequence) is equivalent to the lower part of the nine fo Tang formation, the upper part of the nine fo Tang formation, the lower section of the Sha Hai formation and the upper part of the Sha Hai formation.13 three sequence is equivalent to 7 sequence of nine 7- nine 1 sand groups, sand 5, sand 4- sand 3, 3 sequence of sand 2, Sha 1-1, Sha 1-2 and Sha 1-3. The "coarse fine coarse symmetry" controlled by the "coarse fine skew symmetrical" slope controlled by oblique stretching; "coarse finely asymmetric" controlled by a positive stretching extension and a "fine coarse fine symmetrical" gentle slope controlled by oblique stretching; a "fine coarse" deepwater type controlled by a positive or oblique tension structure; subjected to a positive tension extensional structure. The "fine coarse fine" deep groove type, controlled by the slanting and sliding structure, is controlled by the slant and sliding structure. Three, the source sedimentary system identifies the rock types of the Zhangwu basin, the four, the fifteen subcategories, the twenty subclasses and the 47 basic types, including the terrestrial clastic rock, the volcanic lava large category, the major category and invade of the pyroclastic rock. The fifteen subclasses include conglomerate, sandstone, limestone and so on. The twenty subclasses include Anshan Xuan Wuyan, Xuan Wuyan and so on. The 47 types of basic types include complex conglomerate and gravel. The sedimentary facies (facies, subfacies and microfacies) of the Zhangwu basin, four facies, ten subfacies and twenty microfacies are identified as lacustrine facies and fan delta facies, respectively. The delta facies and volcanic facies, the ten subfacies include shallow lakes, semi deep lakes, subaqueous fans, and the twenty microfacies include turbidity, static cement and underwater channel. The sedimentary system includes the eastern sedimentary system, the Western sedimentary system, the southwest sedimentary system and the Northeast sedimentary system, among which the main sedimentary system is the eastern sedimentary system and the Western sedimentary system. The East is the East. The volcanic source fan delta source sedimentary system, the western part of the volcano weathered source - braided river delta sedimentary system. Four, the tectonic subsidence caused by tectonic control extension and torsion structure resulted in relative lake level change, and thus controlled the sequence development, especially in the middle of the basin. The associated volcanism not only provides a large number of sediments, but also causes differences in the eastern and Western sources of the basin. The simultaneous uplift and deep sag developed in the same period provide two source rocks of the deep lake oil shale and the swamp coal beds. The X2 - X8 low uplift produced by the tectonic action is associated with the two sides of the oil sags, forming a near source assemblage. It is favorable for the formation of oil and gas reservoirs, making the X2 X8 area a favorable area for hydrocarbon accumulation.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:P618.13
【相似文獻】
相關期刊論文 前10條
1 王平;鄒德江;李勝利;;深縣凹陷沙一下段沉積體系恢復方法[J];油氣藏評價與開發(fā);2012年01期
2 王紅霞;李睿;;甘肅北山地區(qū)沙婆泉期沉積體系特征[J];甘肅科技;2013年13期
3 Werner Ricken;汪筱林;;記錄小規(guī)模氣候旋回的沉積體系的敏感性[J];世界地質;1993年01期
4 劉振夏,夏東興,王揆洋;中國陸架潮流沉積體系和模式[J];海洋與湖沼;1998年02期
5 趙俊興,田景春,蔡進功;惠民凹陷南坡古中生代沉積體系特征及時空演化[J];沉積與特提斯地質;2002年01期
6 李華;何幼斌;王振奇;;深水高彎度水道—堤岸沉積體系形態(tài)及特征[J];古地理學報;2011年02期
7 張成弓;陳洪德;陳安清;林良彪;隆軻;楊帥;;黔南-桂中地區(qū)二疊系沉積體系展布規(guī)律及演化[J];成都理工大學學報(自然科學版);2012年06期
8 楊福珍,,王宇林,高明澤;平莊西露天礦區(qū)元寶山組沉積體系分析[J];阜新礦業(yè)學院學報(自然科學版);1995年01期
9 張銀國;梁杰;;南黃海盆地二疊系至三疊系沉積體系特征及其沉積演化[J];吉林大學學報(地球科學版);2014年05期
10 王敏芳,黃傳炎;鹽湖沉積體系的研究現(xiàn)狀與油氣地質意義[J];內江科技;2005年03期
相關會議論文 前10條
1 楊會東;宋立忠;董麗紅;于連忠;褚春梅;張萍;;坳陷盆地沉積體系精細研究方法探討[A];增強自主創(chuàng)新能力 促進吉林經(jīng)濟發(fā)展——啟明杯·吉林省第四屆科學技術學術年會論文集(上冊)[C];2006年
2 孟睿;;淺談納嶺溝地區(qū)沉積體系與鈾成礦之間的關系[A];中國核科學技術進展報告(第二卷)——中國核學會2011年學術年會論文集第1冊(鈾礦地質分卷)[C];2011年
3 孟睿;;淺談納嶺溝地區(qū)沉積體系與鈾成礦之間的關系[A];全國鈾礦大基地建設學術研討會論文集(上)[C];2012年
4 吳因業(yè);涂小仙;;吐魯番盆地三疊系沉積體系與油氣儲集體研究[A];2001年全國沉積學大會摘要論文集[C];2001年
5 賴生華;陸先亮;束青林;;斷陷盆地沉積體系研究新思路:從古地貌、巖性變化、水體深度到沉積體系[A];第九屆全國古地理學及沉積學學術會議論文集[C];2006年
6 高抒;;全新世海岸沉積體系形成、演化及資源潛力:以江蘇海岸為例[A];中國地理學會2007年學術年會論文摘要集[C];2007年
7 李安春;秦蘊珊;;中國近海細粒沉積體系及其環(huán)境響應[A];第三屆全國沉積學大會論文摘要匯編[C];2004年
8 劉家鐸;張哨楠;田景春;趙錫奎;何建軍;;塔里木盆地志留-泥盆系沉積體系及儲層評價[A];第八屆古地理學與沉積學學術會議論文摘要集[C];2004年
9 敬小軍;高攀峰;李儒春;楊立國;姬瑞蘭;王勇;;綏靖油田主力生油層系沉積微相及儲層特征研究[A];青年人才與石化產(chǎn)業(yè)創(chuàng)新發(fā)展——第七屆寧夏青年科學家論壇論文集[C];2011年
10 ;鄂爾多斯盆地西北部長8油層石油勘探[A];2008年度中國地質科技新進展和地質找礦新成果資料匯編[C];2008年
相關博士學位論文 前10條
1 王騰飛;彰武盆地早白堊世沉積體系與構造控制[D];吉林大學;2016年
2 秦志亮;南海北部陸坡塊體搬運沉積體系的沉積過程、分布及成因研究[D];中國科學院研究生院(海洋研究所);2012年
3 魏紅紅;鄂爾多斯地區(qū)石炭—二疊系沉積體系及層序地層學研究[D];西北大學;2002年
4 竇偉坦;鄂爾多斯盆地三疊系延長組沉積體系、儲層特征及油藏成藏條件研究[D];成都理工大學;2005年
5 劉文;Rub’Al Khali盆地古生界沉積體系及石油地質特征[D];成都理工大學;2007年
6 付鎖堂;鄂爾多斯盆地北部上古生界沉積體系及砂體展布規(guī)律研究[D];成都理工大學;2004年
7 朱志軍;川東南地區(qū)志留系小河壩組沉積體系及物質分布規(guī)律研究[D];成都理工大學;2010年
8 李偉;柴達木盆地沉積體系發(fā)育的動力學機制及成藏效應[D];成都理工大學;2004年
9 王海僑;英臺地區(qū)薩葡高油層沉積體系及儲層特征研究[D];中國石油大學;2008年
10 劉曉;二連盆地烏里亞斯太凹陷中洼沉積體系及油氣成藏條件分析[D];中國地質大學(北京);2006年
相關碩士學位論文 前10條
1 潘冬;白云凹陷北坡珠江組沉積體系分析[D];長江大學;2015年
2 付彥輝;瓊東南盆地南部深水水道沉積體系及其油氣意義[D];中國石油大學;2009年
3 劉智;中衛(wèi)及周緣地區(qū)晚古生代主要海泛期沉積體系[D];中國海洋大學;2013年
4 趙玉峰;川西地區(qū)中晚三疊世多重地層劃分對比及沉積體系分析[D];成都理工大學;2009年
5 李新富;正村勘探區(qū)石炭—二疊系沉積體系及聚煤規(guī)律研究[D];河北工程大學;2011年
6 韋東曉;鄂爾多斯盆地中西部地區(qū)三疊系延長組長6沉積體系及砂體展布規(guī)律研究[D];成都理工大學;2007年
7 岳翠;松遼盆地南部伏龍泉斷陷北部下白堊統(tǒng)沉積體系及儲層特征研究[D];吉林大學;2008年
8 裴家學;路東凹陷九上段沉積體系及儲層研究[D];東北石油大學;2013年
9 吳永良;塔里木盆地震旦系沉積體系及巖相古地理特征研究[D];成都理工大學;2010年
10 姜巖;華北油田霸縣凹陷古近紀沙河街組三段沉積體系特征[D];中國地質大學(北京);2014年
本文編號:2060765
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2060765.html