頻譜重構(gòu)技術(shù)及其在儲層預(yù)測中的應(yīng)用
本文選題:最小二乘反演 + 共軛梯度。 參考:《中國石油大學(xué)(華東)》2015年碩士論文
【摘要】:油氣田勘探開發(fā)的程度越來越高,并且勘探領(lǐng)域不斷擴展,所以難度逐漸增強,為了能夠為油田的滾動勘探開發(fā)提供豐富有效的資料,我們提取出地震資料中更多的隱藏信息,地震屬性分析能夠滿足這個要求。基于最小二乘反演的頻譜重構(gòu)技術(shù)假設(shè)地震資料頻譜由雷克子波分量頻譜線性組成,本文通過最小二乘反演迭代擬合,結(jié)合共軛梯度法求解非線性方程組,重構(gòu)出雷克子波分量的主頻值與振幅值從而能夠求得不同主頻雷克子波分量。針對不同地質(zhì)構(gòu)造對不同的頻率特性敏感性不同,將頻譜重構(gòu)結(jié)果進行兩項應(yīng)用。一是對三維數(shù)據(jù)沿層提取數(shù)據(jù),每道進行頻譜重構(gòu),將求得主頻值與振幅值作為兩種新的屬性,頻譜重構(gòu)主頻屬性和頻譜重構(gòu)振幅屬性,應(yīng)用到地震屬性分析。利用這兩種屬性沿層進行了聚類分析,并且得到了良好的聚類效果,并同其他的屬性效果進行了對比。二是對二維剖面求取平均頻譜,并求取平均頻譜的雷克子波分量,將得到的不同主頻的雷克子波分量作為濾波器進行帶通濾波,濾波后深層構(gòu)造更加清晰。為了探索新提取的兩種屬性之間的聯(lián)系,利用了主成分分析方法進行地震屬性的優(yōu)化。
[Abstract]:The degree of exploration and development of oil and gas fields is getting higher and higher, and the exploration field is expanding, so the difficulty is gradually increased. In order to provide rich and effective data for rolling exploration and development of oil fields, we extract more hidden information from seismic data. Seismic attribute analysis can meet this requirement. The spectrum reconstruction technique based on least square inversion assumes that the spectrum of seismic data is composed of linear components of Rayleigh wavelet components. In this paper, the nonlinear equations are solved by iterative fitting by least square inversion and conjugate gradient method. The main frequency value and amplitude value of the main frequency component can be obtained by reconstructing the main frequency wavelet component. Because different geological structures have different sensitivity to different frequency characteristics, the spectrum reconstruction results are applied in two applications. The first is to extract the data along the layer of 3D data and reconstruct the spectrum of each channel. The main frequency value and amplitude value are taken as two new attributes, the main frequency attribute of spectrum reconstruction and the amplitude attribute of spectrum reconstruction are applied to seismic attribute analysis. The two attributes are used to cluster analysis along the layer, and good clustering results are obtained, and compared with other attributes. The second is to obtain the average frequency spectrum of the two-dimensional section, and to obtain the components of the average spectrum. The different main frequency components of the Recker wavelet are used as the filter for bandpass filtering, and the deep structure of the filter becomes clearer. In order to explore the relationship between the two newly extracted attributes, principal component analysis (PCA) is used to optimize seismic attributes.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P631.4;P618.13
【參考文獻】
相關(guān)期刊論文 前10條
1 江羨珍;馬國棟;簡金寶;;Wolfe線搜索下一個新的全局收斂共軛梯度法[J];工程數(shù)學(xué)學(xué)報;2011年06期
2 鄭希鋒;田志遠;宋立溫;;Wolfe線搜索下一類混合共軛梯度法的全局收斂性(英文)[J];運籌學(xué)學(xué)報;2009年02期
3 周光明;;Armijo型線搜索下一種共軛梯度法的收斂性[J];工程數(shù)學(xué)學(xué)報;2008年03期
4 熊冉;劉玲利;劉愛華;陳玉琨;黨青寧;;地震屬性分析在輪南地區(qū)儲層預(yù)測中的應(yīng)用[J];特種油氣藏;2008年02期
5 吳雨花;桂志先;于亮;張宗和;桂冠;;地震屬性分析技術(shù)在西南莊-柏各莊地區(qū)儲層預(yù)測中的應(yīng)用[J];石油天然氣學(xué)報;2007年03期
6 王家映;;地球物理資料非線性反演方法講座(一) 地球物理反演問題概述[J];工程地球物理學(xué)報;2007年01期
7 王咸彬,顧石慶;地震屬性的應(yīng)用與認識[J];石油物探;2004年S1期
8 黃國宏,邵惠鶴;核主元分析及其在人臉識別中的應(yīng)用[J];計算機工程;2004年13期
9 王光宏,蔣平;數(shù)據(jù)挖掘綜述[J];同濟大學(xué)學(xué)報(自然科學(xué)版);2004年02期
10 朱甫芹;基于KPCA的城鎮(zhèn)化水平綜合評價[J];統(tǒng)計與決策;2004年01期
相關(guān)博士學(xué)位論文 前1條
1 楊小兵;聚類分析中若干關(guān)鍵技術(shù)的研究[D];浙江大學(xué);2005年
,本文編號:2024790
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2024790.html