拉壓循環(huán)荷載下砂巖的力學(xué)及蠕變特性研究
本文選題:砂巖 + 拉壓循環(huán); 參考:《重慶大學(xué)》2015年碩士論文
【摘要】:在巖體工程中巖石承受的應(yīng)力環(huán)境非常復(fù)雜,受到拉伸與壓縮反復(fù)加卸載作用的情況經(jīng)常發(fā)生,如地下油氣注采過(guò)程中注采荷載對(duì)圍巖的作用等。本文以砂巖為例進(jìn)行拉伸與壓縮循環(huán)荷載下的疲勞和蠕變?cè)囼?yàn),研究砂巖在拉壓循環(huán)荷載作用下的力學(xué)特性,揭示砂巖加載-卸荷-卸荷拉伸下的變形規(guī)律,并深入探討砂巖在這種復(fù)雜應(yīng)力路徑下的蠕變特性,建立非線性蠕變模型。論文主要研究工作如下:①運(yùn)用改進(jìn)的拉壓連接裝置在INSTRON 1342試驗(yàn)機(jī)上進(jìn)行砂巖定應(yīng)力和增應(yīng)力拉壓循環(huán)荷載試驗(yàn),探討了砂巖在拉壓循環(huán)荷載作用下的主要力學(xué)特性,如軸向應(yīng)變、變形模量和能量損傷隨應(yīng)力水平和循環(huán)次數(shù)的變化規(guī)律等。②利用設(shè)計(jì)開(kāi)發(fā)的杠桿式巖石拉壓流變?cè)囼?yàn)儀對(duì)砂巖進(jìn)行定應(yīng)力和增應(yīng)力拉壓循環(huán)蠕變?cè)囼?yàn),研究砂巖在拉壓循環(huán)荷載作用下的蠕變特性,如瞬時(shí)應(yīng)變、蠕變變形、蠕變速率和體積蠕變變形與應(yīng)力水平和循環(huán)次數(shù)之間的關(guān)系等。③基于拉壓循環(huán)試驗(yàn)結(jié)果,得到砂巖拉壓循環(huán)破壞門(mén)檻值的一個(gè)范圍。根據(jù)應(yīng)力應(yīng)變曲線,計(jì)算變形模量和能量損傷,基于能量耗散分析建立能量損傷與壓應(yīng)力和循環(huán)次數(shù)之間的關(guān)系式,該方程能夠很好的描述砂巖能量損傷演化過(guò)程。④基于拉壓循環(huán)蠕變?cè)囼?yàn)結(jié)果,分析應(yīng)力和循環(huán)對(duì)瞬時(shí)應(yīng)變和蠕變量的影響,研究了增應(yīng)力蠕變?cè)囼?yàn)的體積蠕變,以及每一級(jí)荷載的蠕變速率隨時(shí)間的變化規(guī)律,比較了最后一級(jí)荷載下長(zhǎng)時(shí)蠕變的衰減蠕變、穩(wěn)態(tài)蠕變和加速蠕變?nèi)齻(gè)階段,以及最終的蠕變破壞特性。⑤根據(jù)砂巖增應(yīng)力拉壓循環(huán)蠕變?cè)囼?yàn)結(jié)果,比較試驗(yàn)曲線與Burgers蠕變模型擬合曲線。基于巖石拉伸加速蠕變?cè)囼?yàn)結(jié)果,提出了一個(gè)巖石非線性粘彈塑性蠕變模型。采用基于MATLAB程序的quasi-Newton算法(BFGS算法)對(duì)砂巖拉伸狀態(tài)下的蠕變曲線進(jìn)行了參數(shù)的識(shí)別。
[Abstract]:In rock mass engineering, the stress environment of rock is very complex, which is often subjected to repeated loading and unloading under tension and compression, such as the effect of injection-mining load on surrounding rock in the process of underground oil and gas injection and production. In this paper, the fatigue and creep tests of sandstone under tensile and compressive cyclic loads are carried out to study the mechanical properties of sandstone under tension and compression cyclic loads, and to reveal the deformation law of sandstone under load-unloading tension. The creep characteristics of sandstone under this complex stress path are discussed, and a nonlinear creep model is established. The main research work of this paper is as follows: 1. Using the improved tension-compression connection device to carry out the cyclic load tests on sandstone under constant stress and increasing stress on the Instron 1342 testing machine, the main mechanical properties of sandstone under the cyclic load of tension and compression are discussed. For example, the variation of axial strain, deformation modulus and energy damage with stress level and cycle times, etc. 2. The cyclic creep tests of sandstone under constant stress and increasing stress are carried out by using the levered rock tensile compression rheometer developed in this paper. The creep characteristics of sandstone under tension and compression cyclic loading, such as instantaneous strain, creep deformation, the relationship between creep rate and volume creep deformation, stress level and cycle number, are studied based on the results of tensile compression cycle tests. A range of the failure threshold of sandstone under tension and compression cycles is obtained. According to the stress-strain curve, the deformation modulus and energy damage are calculated. Based on the energy dissipation analysis, the relationship between energy damage and compressive stress and cycle number is established. The equation can well describe the energy damage evolution process of sandstone. Based on the results of tensile compression cyclic creep test, the influence of stress and cycle on instantaneous strain and creep is analyzed, and the volume creep of stress-increasing creep test is studied. The creep rate of each stage load varies with time, and the three stages of long term creep attenuation creep, steady state creep and accelerated creep under the last stage load are compared. Finally, the creep failure characteristics of sand are compared with those of Burgers creep model according to the cyclic creep test results of sandstone under increased stress, tension and compression. Based on the results of tensile accelerated creep test, a nonlinear viscoelastic-plastic creep model for rock is proposed. The quasi-Newton algorithm based on MATLAB (BFGS algorithm) is used to identify the parameters of creep curve in sandstone tensile state.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧中華,高廣運(yùn);循環(huán)荷載下飽和粘土強(qiáng)度等效計(jì)算探討[J];西北地震學(xué)報(bào);2005年01期
2 劉榮素;;淺議循環(huán)荷載下筋土界面力學(xué)特征[J];企業(yè)技術(shù)開(kāi)發(fā);2011年14期
3 蔣敏敏;蔡正銀;肖昭然;;動(dòng)荷載后黏性土靜力性質(zhì)研究進(jìn)展[J];水運(yùn)工程;2013年06期
4 陳存禮;馬少雄;李雷雷;蔡宗鵬;;飽和黃河岸灘粉土循環(huán)荷載后的變形強(qiáng)度特性[J];水利學(xué)報(bào);2014年07期
5 李偉紅;劉晟鋒;陳蘊(yùn)生;;組合荷載下裂隙試樣力學(xué)特性的試驗(yàn)研究[J];山西建筑;2009年02期
6 徐超;石志龍;;循環(huán)荷載特征對(duì)筋土界面剪切特性的影響試驗(yàn)[J];中國(guó)公路學(xué)報(bào);2011年03期
7 周健;簡(jiǎn)琦薇;;循環(huán)荷載下老黏土的動(dòng)力特性試驗(yàn)研究[J];地下空間與工程學(xué)報(bào);2013年06期
8 劉建鋒;謝和平;徐進(jìn);裴建良;;循環(huán)荷載下巖石變形參數(shù)和阻尼參數(shù)探討[J];巖石力學(xué)與工程學(xué)報(bào);2012年04期
9 李樹(shù)春;許江;楊春和;蒲毅彬;馬巍;;循環(huán)荷載下巖石損傷的CT細(xì)觀試驗(yàn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2009年08期
10 馮春林;馮超博;吳永豐;馮福賢;畢忠偉;;循環(huán)荷載下巖石應(yīng)變率雙因素模型實(shí)驗(yàn)研究[J];交通科學(xué)與工程;2011年01期
相關(guān)會(huì)議論文 前1條
1 黃博;陳云敏;姬美秀;;海浪循環(huán)荷載下海洋土的液化[A];中國(guó)土木工程學(xué)會(huì)第九屆土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2003年
相關(guān)碩士學(xué)位論文 前8條
1 劉騫;豎向循環(huán)荷載下靜壓樁的承載特性研究[D];青島理工大學(xué);2015年
2 劉偉;拉壓循環(huán)荷載下砂巖的力學(xué)及蠕變特性研究[D];重慶大學(xué);2015年
3 馬灝;汕頭軟土在不規(guī)則循環(huán)荷載下的動(dòng)力性能分析[D];汕頭大學(xué);2011年
4 黨強(qiáng);循環(huán)荷載下樁基特性數(shù)值模擬[D];長(zhǎng)安大學(xué);2014年
5 畢雪梅;循環(huán)荷載下天津?yàn)I海吹填土動(dòng)應(yīng)力應(yīng)變關(guān)系研究[D];天津城建大學(xué);2014年
6 李志星;循環(huán)荷載下飽和軟粘土地基一維非線性固結(jié)理論及孔隙水壓力計(jì)算[D];武漢理工大學(xué);2006年
7 楊帆;循環(huán)荷載下含裂隙脆性巖體破壞機(jī)理試驗(yàn)研究[D];成都理工大學(xué);2014年
8 楊獻(xiàn)永;循環(huán)荷載下壓實(shí)粉土的動(dòng)力特性試驗(yàn)研究[D];北京交通大學(xué);2008年
,本文編號(hào):2011272
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/2011272.html