龍女寺構(gòu)造異常高壓氣層識別
本文選題:異常高壓 + 氣層識別。 參考:《西南石油大學(xué)》2015年碩士論文
【摘要】:川中龍女寺氣田地質(zhì)構(gòu)造復(fù)雜,斷層、裂縫較為發(fā)育,其目的層巖性以碳酸鹽巖為主,地層壓力系數(shù)變化范圍在1.0-1.9之間,表現(xiàn)為明顯異常高壓。本文以龍女寺構(gòu)造沙溪廟-燈影組地層為主要研究對象,充分利用地質(zhì)、鉆井、測錄井等數(shù)據(jù),從巖石力學(xué)角度出發(fā),重點(diǎn)開展地層孔隙壓力預(yù)測及高壓氣層識別,為高壓氣藏的順利鉆探和高效開發(fā)提供了決策依據(jù)。主要研究內(nèi)容和取得成果如下: (1)基于NCRA法開展了復(fù)雜地層巖性分析,結(jié)合取芯和巖屑錄井資料建立了工區(qū)地層巖性剖面。利用電成像測井資料分析了目的層的裂縫和孔洞等空隙空間結(jié)構(gòu)特征。這為異常高壓氣層識別提供了巖性和物性依據(jù)。 (2)傳統(tǒng)的地層孔隙壓力計算方法忽略了流體膨脹、構(gòu)造擠壓等因素,降低了地層壓力計算的精度。龍女寺構(gòu)造異常高壓的主要成因是地層卸載作用,包括烴源巖生油和油裂解氣兩個方面。本文采用改進(jìn)的伊頓法和有效應(yīng)力法分別計算砂泥巖和碳酸鹽巖地層的地層孔隙壓力,計算結(jié)果與實(shí)測地層壓力相符。工區(qū)大安寨-筇竹寺組地層呈現(xiàn)異常高壓。 (3)利用工區(qū)關(guān)鍵井層段的橫波時差和縱波時差數(shù)據(jù),通過回歸分析得出橫波時差曲線的計算公式,據(jù)此可構(gòu)建無陣列聲波資料井的橫波時差曲線,為巖石力學(xué)參數(shù)的計算提供了重要基礎(chǔ)數(shù)據(jù)。 (4)根據(jù)地層含氣聲學(xué)特征理論,高壓氣層具有泊松比相對較低、體積壓縮系數(shù)相對較大、流體壓縮系數(shù)遠(yuǎn)遠(yuǎn)大于非氣層的巖石力學(xué)特征,利用縱橫波時差曲線和密度曲線準(zhǔn)確計算對氣層敏感的巖石力學(xué)參數(shù),以試氣結(jié)果為參照標(biāo)準(zhǔn),采用兩參數(shù)交會法分區(qū)、分層位建立氣層識別圖版,并確定了異常高壓氣層的判釋標(biāo)準(zhǔn)。 (5)灰色關(guān)聯(lián)分析法綜合考慮了能夠反映氣層響應(yīng)特征的多種參數(shù),具有直觀、便捷的優(yōu)點(diǎn)。分別采用巖石力學(xué)參數(shù)和測井四參數(shù)、六參數(shù)的灰色關(guān)聯(lián)法建立工區(qū)儲層含流體類型識別的中心模式,并識別工區(qū)關(guān)鍵井儲層含流體類型,巖石力學(xué)參數(shù)灰色關(guān)聯(lián)法的識別符合率最高。 (6)結(jié)合工區(qū)的鉆井和錄井資料可以及時有效地識別各井的異常高壓氣層,高壓氣層有其相應(yīng)的鉆井技術(shù)對策,應(yīng)盡可能避免在鉆進(jìn)高壓氣層過程中發(fā)生井涌、井噴等復(fù)雜事故。 基于上述一系列方法與模型,形成了一套適合于龍女寺構(gòu)造工區(qū)的復(fù)雜巖性分析、巖石力學(xué)參數(shù)和地層壓力計算及高壓氣層識別的方法與技術(shù),效果良好,可為異常高壓氣層的鉆探和開發(fā)提供決策依據(jù)。
[Abstract]:The geological structure of Longnusi gas field in central Sichuan is complicated, the faults and fractures are relatively developed, the lithology of the target layer is mainly carbonate rock, and the variation range of formation pressure coefficient is between 1.0-1.9, which shows obvious abnormal high pressure. In this paper, taking Shaximiao-Dengying formation of Longnusi structure as the main research object, making full use of geological, drilling and logging data, from the point of view of rock mechanics, the prediction of formation pore pressure and the identification of high-pressure gas layers are emphatically carried out. It provides the decision basis for the smooth drilling and high efficiency development of high pressure gas reservoir. The main contents and results of the study are as follows: 1) based on the NCRA method, the lithology analysis of complex strata is carried out, and the stratigraphic lithology profile of the working area is established by combining the core extraction and cuttings logging data. The characteristics of void space structure such as fractures and voids in the target layer are analyzed by using the electrical imaging logging data. This provides a basis for lithology and physical properties for the identification of abnormal high pressure gas formations. 2) the traditional calculation method of formation pore pressure neglects the factors of fluid expansion and structural compression, and reduces the accuracy of formation pressure calculation. The main cause of abnormal high pressure in Longnusi structure is strata unloading, including source rock oil generation and oil cracking gas. In this paper, the improved Eaton method and the effective stress method are used to calculate the formation pore pressure of sand mudstone and carbonate rock, respectively. The calculated results are in agreement with the measured formation pressure. The formation of Da'anzhai-Qiongzhusi formation presents abnormal high pressure. 3) based on the S-wave moveout and P-wave moveout data of key wells in the working area, the formulas for calculating S-wave moveout curves are obtained by regression analysis, and the S-wave moveout curves of wells without array acoustic data can be constructed. It provides important basic data for the calculation of rock mechanics parameters. According to the theory of acoustical characteristics of gas-bearing strata, the high-pressure gas layer has the characteristics of relatively low Poisson's ratio, larger volume compression coefficient, and greater fluid compression coefficient than that of non-gas formation. The sensitive rock mechanics parameters are calculated accurately by using the longitudinal and shear wave moveout curve and density curve. Taking the gas test results as the reference standard, the gas layer identification chart is established by using the two-parameter intersection method. The standard of interpretation of abnormal high pressure gas reservoir is determined. 5) the grey relational analysis method synthetically considers many parameters which can reflect the characteristics of gas reservoir response, and has the advantages of intuitionistic and convenient. The grey correlation method with four parameters of rock mechanics, four parameters of logging and six parameters is used to establish the central pattern of reservoir fluid type identification, and to identify the fluid type of key well reservoir in the working area. The recognition coincidence rate of grey correlation method for rock mechanics parameters is the highest. 6) combined with the drilling and logging data in the working area, the abnormal high pressure gas formation of each well can be identified in time and effectively. The high pressure gas formation has its corresponding drilling technical countermeasures, and the complex accidents such as well bore and well blowout should be avoided as far as possible during the drilling of the high pressure gas reservoir. Based on the above methods and models, a set of methods and techniques suitable for complex lithology analysis, calculation of rock mechanics parameters and formation pressure, and identification of high pressure gas layers in Longnusi structural area have been developed, and the results are satisfactory. It can provide decision basis for drilling and development of abnormal high pressure gas reservoir.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P618.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魯曉兵;王淑云;張建紅;孫國亮;時忠民;;Experimental Study of Pore Pressure and Deformation of Suction Bucket Foundations Under Horizontal Dynamic Loading[J];China Ocean Engineering;2005年04期
2 張穎;許慶英;龔愛華;李平;;中子-密度重疊識別氣層法在長慶氣田的應(yīng)用[J];測井技術(shù);2007年03期
3 譚開俊;劉之的;夏宏泉;關(guān)銀錄;楊志冬;;基于灰色關(guān)聯(lián)的地層巖性隨鉆測井解釋方法[J];測井技術(shù);2007年06期
4 賈孟強(qiáng);;川東北地區(qū)碳酸鹽巖氣層識別方法研究[J];測井技術(shù);2008年04期
5 李增浩;陳東;夏宏泉;楊鴻;;用隨鉆測井資料實(shí)時識別磨溪構(gòu)造復(fù)雜白云巖儲層[J];測井技術(shù);2009年02期
6 鐘文俊;夏宏泉;趙昊;周勇軍;;潼南構(gòu)造異常高壓層的測井識別研究[J];測井技術(shù);2010年01期
7 張永軍;顧定娜;馬肅濱;陳向陽;陳光輝;萬永清;;陣列聲波測井資料在吐哈油田致密砂巖氣層識別中的應(yīng)用[J];測井技術(shù);2012年02期
8 唐謝;趙軍;黃毅;郭秀麗;張承森;;復(fù)雜儲集空間油氣藏的測井表征——以塔里木盆地輪南油田潛山碳酸鹽巖油藏為例[J];大慶石油地質(zhì)與開發(fā);2008年01期
9 ;Characteristics of Abnormal Pressure Systems and Their Responses of Fluid in Huatugou Oil Field,Qaidam Basin[J];Acta Geologica Sinica(English Edition);2009年05期
10 劉遠(yuǎn)征;夏宏泉;陳東;吳寶玉;;埕海油田二區(qū)沙河街組異常地層孔隙壓力計算[J];國外測井技術(shù);2008年05期
相關(guān)博士學(xué)位論文 前1條
1 鄧虎成;斷層共生裂縫系統(tǒng)的發(fā)育規(guī)律及分布評價[D];成都理工大學(xué);2009年
,本文編號:1986698
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1986698.html