西山煤田古交礦區(qū)煤層氣富集規(guī)律及產(chǎn)能主控因素研究
本文選題:古交礦區(qū) + 煤儲層; 參考:《太原理工大學(xué)》2017年博士論文
【摘要】:本文收集了西山煤田古交礦區(qū)煤礦采掘工程地質(zhì)及煤層氣井相關(guān)資料;開展了礦區(qū)野外地質(zhì)填圖及礦井煤層剖面地質(zhì)編錄工作;采集了礦區(qū)2#、8#煤層新鮮樣品17組,并進行了煤巖組分、鏡質(zhì)體反射率、甲烷等溫吸附、低溫氮比表面積、常規(guī)孔滲、變圍壓孔滲及核磁共振等實驗分析;采集了煤層氣井產(chǎn)出水樣品30組,進行了水化學(xué)檢測。綜合各類地質(zhì)資料及實驗結(jié)果,分析了古交礦區(qū)2#、8#煤層地質(zhì)特征;結(jié)合煤層含氣量分布規(guī)律,對古交礦區(qū)煤層氣分布模式進行了系統(tǒng)研究,揭示了不同分布模式下煤層氣的富集規(guī)律;在煤層氣地質(zhì)特征研究及分布模式劃分基礎(chǔ)上,結(jié)合工程措施及排采制度,定量分析了古交礦區(qū)不同區(qū)塊內(nèi)產(chǎn)氣量主控因素。論文研究獲得的主要成果和認識如下:(1)將古交礦區(qū)劃分為平緩單斜淺埋、平緩單斜深埋、陡峭單斜、復(fù)雜褶皺4種煤層氣分布模式。復(fù)雜褶皺模式和陡峭單斜模式下煤層含氣性差、含氣飽和度低,平緩單斜淺埋及平緩單斜深埋模式下煤層含氣性好。平緩單斜淺埋模式下煤層氣富集條件是埋深大、保存條件好;平緩單斜深埋模式下埋深小、水動力弱有利于煤層氣富集。(2)基于古交礦區(qū)煤層氣井產(chǎn)能特征,結(jié)合無因次產(chǎn)氣率及煤層氣等溫吸附/解吸過程,揭示礦區(qū)內(nèi)煤層氣井達到穩(wěn)產(chǎn)時對應(yīng)無因次產(chǎn)氣率為0.65。計算了古交礦區(qū)煤層氣井穩(wěn)產(chǎn)氣量,并對煤層氣井產(chǎn)能進行了分級:高產(chǎn)井產(chǎn)氣量大于500m3/d,大于1000m3/d為特高產(chǎn)井;中產(chǎn)井產(chǎn)氣量300~500m3/d;低產(chǎn)井產(chǎn)氣量小于300m3/d,產(chǎn)氣量等于0為干井。(3)古交礦區(qū)內(nèi)煤級變化大,隨煤巖變質(zhì)程度升高,抗壓強度和滲透率穩(wěn)定性增強,滲透率損傷率逐漸減小。氣煤、肥煤及焦煤煤質(zhì)相對較軟,壓裂過程中易發(fā)生變形,并產(chǎn)生大量煤粉堵塞裂隙,阻斷流體滲流通道。針對這類煤儲層,在煤層氣開發(fā)過程中應(yīng)當(dāng)慎重采用直井水力壓裂開發(fā)方式。(4)氣井排采過程中,隨著儲層壓力下降,大孔、裂隙中自由氣和溶解氣首先滲流至井筒,小孔中吸附氣逐漸開始解吸,當(dāng)儲層壓力下降一定幅度后,微孔中吸附氣才開始緩慢解吸。電阻率測井、水力壓裂關(guān)鍵壓力數(shù)據(jù)是評估煤儲層壓裂改造前、后滲透性的重要參數(shù)。建立了電阻率對原始儲層滲透率的評價模型。探索了破停壓力差、停降壓力差評價壓裂改造效果的可行性。(5)古交礦區(qū)內(nèi):平緩單斜淺埋模式下,煤儲層原始滲透性、壓裂改造效果對產(chǎn)氣量影響最顯著;平緩單斜深埋模式下,產(chǎn)氣量主要受到資源量的影響,滲透率的影響相對較小;陡峭單斜模式下,煤層氣井無法有效排水,區(qū)塊內(nèi)煤層氣井產(chǎn)水量均為0,整體產(chǎn)氣效果差,不具有高產(chǎn)井;復(fù)雜褶皺模式下,煤層氣井產(chǎn)能主要受控于排采因素,排水效果好、生產(chǎn)壓差小最有利于煤層氣井高產(chǎn)。
[Abstract]:This paper has collected the relevant data of mining engineering geology and coalbed methane wells in Gujiao mining area of Xishan coalfield, carried out the field geological mapping and geological cataloguing of coal seam section in mining area, collected 17 groups of fresh samples of 2 #n8# coal seam in mining area, The composition of coal and rock, vitrinite reflectance, isothermal adsorption of methane, specific surface area of nitrogen at low temperature, conventional porosity and permeability, perturbed pore permeability and nuclear magnetic resonance (NMR) were analyzed, and 30 groups of water samples from coalbed methane wells were collected and tested by hydrochemistry. Based on all kinds of geological data and experimental results, the geological characteristics of coal seam No. 2#y8# in Gujiao mining area are analyzed, and the distribution pattern of coalbed methane in Gujiao mining area is systematically studied in combination with the distribution law of gas content in coal seam. The enrichment law of coalbed methane under different distribution modes is revealed, and the main controlling factors of gas production in different blocks of Gujiao mining area are quantitatively analyzed on the basis of the study of geological characteristics of coalbed methane and the division of distribution model, combined with engineering measures and drainage system. The main achievements and understandings of this paper are as follows: (1) the Gujiao mining area is divided into four coalbed methane distribution models: flat monoclinal shallow burying, gentle single oblique deep burying, steep monoclinal and complex fold. Under the complicated fold model and steep monoclinal mode, the gas content of coal seam is poor, the gas saturation is low, and the gas content of coal seam is good under the flat monoclinal shallow burying mode and the gentle monoclinal deep burying mode. The enrichment conditions of CBM in flat monoclinal shallow burial mode are large buried depth and good preservation condition, and the buried depth is small in flat monoclinic deep buried mode, and the weak hydrodynamic force is favorable to coalbed methane enrichment. 2) based on the productivity characteristics of coalbed methane wells in Gujiao mining area, Combined with dimensionless gas production rate and isothermal adsorption / desorption process of coalbed gas, it is revealed that the corresponding dimensionless gas production rate of coalbed gas wells in mining area is 0.65 when they reach stable production. The steady gas production of coalbed gas wells in Gujiao mining area is calculated, and the productivity of coalbed gas wells is classified as follows: the gas production of high production wells is more than 500m3 / d, which is greater than that of 1000m3/d wells; The gas production of middle production wells is 300 ~ 500m3 / d; the gas production of low production wells is less than 300m3 / d, and the gas production is equal to 0) the coal rank in Gujiao mining area changes greatly, with the increase of metamorphic degree of coal and rock, the compressive strength and permeability stability increase, and the permeability damage rate decreases gradually. The coal quality of gas coal, fat coal and coking coal is relatively soft, and it is easy to deform during fracturing, and a large amount of pulverized coal is produced to block the fissure and block the fluid seepage channel. In view of this kind of coal reservoir, in the process of coalbed methane development, the hydraulic fracturing development mode of vertical well. Y4) should be carefully adopted. In the process of discharging and producing gas wells, with the decrease of reservoir pressure, the free gas and dissolved gas in the big pore and fracture flow first to the wellbore. The adsorbed gas begins to desorb gradually, and when the reservoir pressure decreases by a certain extent, the adsorption gas in the micropore begins to desorb slowly. Resistivity logging and key pressure data of hydraulic fracturing are important parameters for evaluating permeability of coal reservoir before and after fracturing. The evaluation model of resistivity to original reservoir permeability is established. In Gujiao mining area, the original permeability of coal reservoir and the effect of fracturing modification on gas production are most significant under the flat and single oblique shallow burying mode. The gas production is mainly affected by the amount of resources, and the influence of permeability is relatively small under the mode of flat and single oblique deep burying, and the coalbed methane well can not be effectively drained under the steep monoclinic mode, and the water production of the coalbed gas well in the block is all 0, and the overall gas production effect is poor. Under the complex fold model, the productivity of coalbed gas wells is mainly controlled by the factors of drainage, the drainage effect is good, and the production pressure difference is the most favorable to the high production of coalbed gas wells.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TE37;P618.13
【參考文獻】
相關(guān)期刊論文 前10條
1 周睿;姚艷斌;劉大錳;蔡益棟;王穎晉;;太原西山煤田煤儲層含氣性分布規(guī)律及控制因素[J];煤炭科學(xué)技術(shù);2017年02期
2 馬燕華;蘇春利;劉偉江;朱亞鵬;李俊霞;;水化學(xué)和環(huán)境同位素在示蹤棗莊市南部地下水硫酸鹽污染源中的應(yīng)用[J];環(huán)境科學(xué);2016年12期
3 王小煥;邵景安;王金亮;王丹;倪九派;謝德體;;三峽庫區(qū)長江干流入出庫水質(zhì)評價及其變化趨勢[J];環(huán)境科學(xué)學(xué)報;2017年02期
4 李恕洲;何剛;;基于GRAY的新型城鎮(zhèn)化發(fā)展水平綜合評價[J];安徽理工大學(xué)學(xué)報(社會科學(xué)版);2016年04期
5 姚艷斌;劉大錳;;基于核磁共振弛豫譜的煤儲層巖石物理與流體表征[J];煤炭科學(xué)技術(shù);2016年06期
6 張遂安;袁玉;孟凡圓;;我國煤層氣開發(fā)技術(shù)進展[J];煤炭科學(xué)技術(shù);2016年05期
7 汪崗;秦勇;解奕煒;申建;黃波;;古交區(qū)塊煤層氣地球化學(xué)特征及其成因[J];煤炭學(xué)報;2016年05期
8 逄建東;王震;姚長華;段長江;賈存富;湯達禎;汪雷;;巖漿活動對西山煤田煤層含氣量的控制作用[J];科技通報;2016年03期
9 Wang Gang;Qin Yong;Shen Jian;Hu Yuanyuan;Liu Donghai;Zhao Long;;Resistivity response to the porosity and permeability of low rank coal[J];International Journal of Mining Science and Technology;2016年02期
10 宋巖;柳少波;馬行陟;李建武;琚宜文;李貴中;楊志遠;;中高煤階煤層氣富集高產(chǎn)區(qū)形成模式與地質(zhì)評價方法[J];地學(xué)前緣;2016年03期
,本文編號:1901373
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1901373.html