基于地殼形變監(jiān)測(cè)數(shù)據(jù)的地震危險(xiǎn)性研究
本文選題:地殼形變 + 監(jiān)測(cè) ; 參考:《中國(guó)礦業(yè)大學(xué)(北京)》2017年博士論文
【摘要】:環(huán)太平洋地震帶和歐亞地震帶是世界上兩大著名的地震帶,我國(guó)位于這兩大地震帶的交匯部位,夾持在印度板塊、太平洋板塊以及菲律賓板塊之中,受印度板塊的擠壓作用和太平洋板塊俯沖作用的影響,晚第四紀(jì)和現(xiàn)代構(gòu)造活動(dòng)強(qiáng)烈,地震災(zāi)害頻發(fā)。研究表明,構(gòu)造活動(dòng)與地震的孕育密切相關(guān),許多強(qiáng)震主要是由逆斷層和走滑斷層產(chǎn)生,正斷層的規(guī)模一般較小,其所產(chǎn)生的地震規(guī)模也較小;顒(dòng)地塊運(yùn)動(dòng)是中國(guó)大陸在晚新生代和現(xiàn)代的構(gòu)造變形主要特征,地塊邊界主要為活動(dòng)斷裂帶、活動(dòng)褶皺帶和活動(dòng)盆地帶;并且活動(dòng)塊體通過邊界帶的構(gòu)造變形來對(duì)強(qiáng)震起著控制作用,各活動(dòng)邊界的地震水平受控于其自身構(gòu)造活動(dòng)速率?傮w表現(xiàn)為,我國(guó)西部地震活動(dòng)水平高于東部。地殼形變測(cè)量為研究地殼變形及其與地震之間的關(guān)系提供了重要的技術(shù)手段,并且提供了具有明確物理意義的直接證據(jù)。本文從跨斷層場(chǎng)地監(jiān)測(cè)得到的直觀的斷層運(yùn)動(dòng)特征出發(fā),以1973年Savage等人提出的螺旋位錯(cuò)模型為基礎(chǔ),以鮮水河斷裂帶為例分析了跨斷層形變測(cè)量得到的近場(chǎng)斷層運(yùn)動(dòng)特征,并比較其與InSAR形變場(chǎng)得到的斷層空間運(yùn)動(dòng)特征的一致性,從地震矩均衡與斷層滑動(dòng)虧損角度估計(jì)了斷層的地震危險(xiǎn)性,結(jié)合固體潮汐形變測(cè)量異常分析與識(shí)別方法提出了基于多種方法的地殼形變監(jiān)測(cè)模式。主要取得研究成果如下:(1)跨斷層形變測(cè)量作為一種監(jiān)測(cè)地殼形變的方法,通過觀測(cè)斷層附近范圍內(nèi)跨斷層點(diǎn)位間的相對(duì)位移變化來研究斷層的運(yùn)動(dòng)特征。本文在前人研究基礎(chǔ)上提出了基于平面直角坐標(biāo)的斷層運(yùn)動(dòng)學(xué)參數(shù)計(jì)算方法,以鮮水河斷裂帶跨斷層場(chǎng)地測(cè)量資料為例比較了兩種斷層運(yùn)動(dòng)學(xué)參數(shù)計(jì)算方法的差異,兩種方法得到的計(jì)算結(jié)果基本一致。從斷層運(yùn)動(dòng)學(xué)參數(shù)計(jì)算方法和遇到的問題出發(fā),提出了跨斷層場(chǎng)地布設(shè)的優(yōu)化方式。(2)在螺旋位錯(cuò)模型基礎(chǔ)上推導(dǎo)出了近場(chǎng)斷層運(yùn)動(dòng)位錯(cuò)模型公式,通過近場(chǎng)的跨斷層場(chǎng)地基線變化揭示其所跨斷層部位的深部閉鎖信息,計(jì)算結(jié)果表明鮮水河斷裂帶上老乾寧場(chǎng)地閉鎖深度達(dá)到了18km,其余場(chǎng)地閉鎖深度均較淺,并根據(jù)斷層基線速率變化利用形變測(cè)量數(shù)據(jù)估計(jì)了斷層閉鎖時(shí)間。(3)利用SBAS-InSAR時(shí)序分析方法研究震間構(gòu)造變形信息。利用SBAS-InSAR時(shí)序分析方法得到的空間形變場(chǎng)揭示了鮮水河斷裂帶的左旋走滑運(yùn)動(dòng)性質(zhì);選取橫跨斷層的15條剖面,計(jì)算發(fā)現(xiàn)斷層兩側(cè)的形變運(yùn)動(dòng)特征符合文中推導(dǎo)出的近場(chǎng)斷層運(yùn)動(dòng)模型,閉鎖深度計(jì)算結(jié)果與跨斷層測(cè)量的計(jì)算結(jié)果均反映了鮮水河斷裂帶北西段的淺閉鎖特征,二者具有很好的一致性;利用螺旋位錯(cuò)模型進(jìn)行擬合得到鮮水河斷裂帶北西段左旋走滑速率為10mm/a左右;提出了分層位錯(cuò)模型,解釋了斷裂帶的淺閉鎖特征;計(jì)算斷層滑動(dòng)引起的累積地震矩和研究區(qū)內(nèi)1700-2016年以來M≥5.0以上地震的地震矩釋放量,得到研究區(qū)斷層的滑動(dòng)虧損進(jìn)而分析研究區(qū)地震危險(xiǎn)性,綜合多種研究成果分析認(rèn)為乾寧段存在強(qiáng)震的危險(xiǎn)。(4)與跨斷層測(cè)量、InSAR、GPS觀測(cè)相比,固體潮汐形變測(cè)量具有更高的觀測(cè)精度,能夠觀測(cè)到其所在位置微小變化。文中以固體潮汐形變觀測(cè)數(shù)據(jù)出現(xiàn)的異常變化為例,說明定點(diǎn)形變觀測(cè)中異常核實(shí)、信息提取與判定方法,利用集中載荷模型分析了庫(kù)容變化對(duì)地傾斜觀測(cè)影響,并提出了基于水位變化改正伸縮應(yīng)變數(shù)據(jù)的計(jì)算方法,對(duì)定點(diǎn)形變觀測(cè)布局提出一些建議。(5)綜合上述研究成果,從觀測(cè)精度、空間分辨率和時(shí)間分辨率角度分析了不同觀測(cè)方法的優(yōu)勢(shì),提出了基于多種觀測(cè)方法的地殼形變監(jiān)測(cè)模式,為科學(xué)合理布局地殼形變監(jiān)測(cè)網(wǎng)絡(luò)提供研究基礎(chǔ)。
[Abstract]:The Pacific seismic belt and the Eurasian seismic belt are the two most famous seismic belts in the world. Our country is located at the intersection of the two major seismic belts. It is held in the India plate, the Pacific plate and the Philippines plate. It is influenced by the extrusion of the India plate and the subduction of the Pacific plate, and the late Quaternary and modern tectonic activities are strong. The earthquake disaster occurs frequently. The study shows that the tectonic activity is closely related to the inoculation of the earthquake. Many strong earthquakes are mainly caused by the reverse fault and the strike slip fault. The scale of the normal fault is generally small and the scale of the earthquake is small. The movement of the active block is the main feature of the tectonic deformation of the late Cenozoic and the modern in the mainland of China, and the main boundary is the main boundary. The active fault zone, active fold belt and active basin zone, and the active block is controlled by the tectonic deformation of the boundary zone, and the seismic level of each active boundary is controlled by its own tectonic activity rate. Form and its relationship with earthquakes provide important technical means, and provide direct evidence with clear physical significance. This paper, based on the spiral dislocation model proposed by Savage et al. In 1973, analyzes the cross fault pattern based on the feature of the visual fault motion obtained from the monitoring of the cross fault site. The characteristics of the near-field fault motion obtained by variable measurement are compared, and the consistency of the spatial motion characteristics of the fault is compared with the InSAR deformation field. The seismic hazard of the fault is estimated from the angle of seismic moment equilibrium and the fault slip loss, and the crustal deformation monitoring based on a variety of methods is put forward in combination with the method of anomaly analysis and recognition of the solid tide deformation measurement. The main achievements are as follows: (1) cross fault deformation measurement is used as a method of Monitoring Crustal deformation, and the motion characteristics of the fault are studied by observing the relative displacement changes between the faults in the vicinity of the fault. Based on the previous research, a fault kinematic parameter meter based on the plane right angle coordinates is proposed. The calculation method, taking the survey data of the cross fault site in the fresh water river fault zone as an example, compares the difference of the calculation methods of the kinematic parameters of the two kinds of faults, and the results obtained by the two methods are basically the same. From the calculation method of the kinematic parameters of the fault and the problems encountered, the optimization method for the layout of the cross fault site is put forward. (2) the spiral dislocation model is used. On the basis of this, the model formula of the near field fault dislocation model is derived, and the deep interlocking information of the cross fault location is revealed through the change of the baseline of the cross fault site in the near field. The calculation results show that the locking depth of the old dry Ning site on the fresh water river fault zone reaches 18km, and the rest of the site is shallow, and the change of the base line rate varies according to the fault baseline rate. The time of fault locking is estimated with the deformation measurement data. (3) using the SBAS-InSAR time series analysis method to study the structural deformation information between earthquakes. The spatial deformation field obtained by the SBAS-InSAR time series analysis method reveals the left-slip movement property of the fresh water river fault zone, and selects 15 sections across the fault to calculate the deformation transport on both sides of the fault. The dynamic characteristics conformed to the near field fault motion model derived from the paper, and the calculation results of interlocking depth calculation and cross fault measurement all reflect the characteristics of shallow atresia in the north west section of the fresh water river fault zone. The two ones have good consistency, and the levospin strike slip rate of the North west section of the fresh water river fault zone is 10mm/ by using the spiral dislocation model. The stratified dislocation model is proposed to explain the shallow atresia characteristics of the fault zone, the cumulative seismic moment caused by the fault slip and the earthquake moment release of more than 5 earthquakes over 1700-2016 years in the study area for 1700-2016 years in the study area, and the slip loss of the fault in the study area is obtained, and the seismic risk of the study area is analyzed. There is a danger of strong earthquakes in the dry Ning section. (4) compared with the cross fault measurement, InSAR, GPS observation, the solid tide deformation measurement has a higher observation precision and can observe the small change in its location. In this paper, the abnormal changes in the observed data of the solid tide deformation data are taken as an example, and the anomaly verification in the observed fixed point deformation observation, the information extraction and the decision are made. Method, using the concentrated load model, the influence of the change of storage capacity on the ground tilt observation is analyzed, and a calculation method based on the correction expansion strain data of the water level is proposed, and some suggestions are put forward for the observation layout of the fixed point deformation. (5) the results of the above research are integrated, and the different observations are analyzed from the observation accuracy, the space resolution and the time resolution. Based on the advantages of the method, a monitoring model of crustal deformation based on various observation methods is put forward to provide scientific basis for scientific and rational layout of crustal deformation monitoring network.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:P227;P315.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳德福;中美地殼形變與地震學(xué)術(shù)討論會(huì)在武漢召開[J];中國(guó)地震;1985年04期
2 尚紅;劉天海;楊懷寧;;峽谷型水庫(kù)地殼形變流動(dòng)監(jiān)測(cè)技術(shù)研究[J];大地測(cè)量與地球動(dòng)力學(xué);2010年04期
3 ;《地殼形變與地震》1981年總目錄[J];地殼形變與地震;1981年04期
4 馮振軍;對(duì)“略談當(dāng)陽(yáng)1981年3.8級(jí)地震與地殼形變”一文的看法[J];地殼形變與地震;1982年04期
5 ;地殼形變與地震第1期一第4期1982年總目錄[J];地殼形變與地震;1982年04期
6 ;地殼形變與地震1983年總目錄[J];地殼形變與地震;1983年04期
7 ;《地殼形變與地震》編委擴(kuò)大會(huì)在湖北宜昌市召開[J];地殼形變與地震;1984年01期
8 ;地殼形變與地震 第6卷1986年 總目錄[J];地殼形變與地震;1986年04期
9 ;地殼形變與地震第7卷1987年總目錄[J];地殼形變與地震;1987年04期
10 ;地殼形變與地震第9卷1989年總目錄[J];地殼形變與地震;1989年04期
相關(guān)會(huì)議論文 前10條
1 馬集遐;;閩南現(xiàn)今地殼形變與地殼穩(wěn)定性的關(guān)系[A];中國(guó)地質(zhì)科學(xué)院水文地質(zhì)工程地質(zhì)研究所文集(7)[C];1991年
2 吳翼麟;;丹江口水庫(kù)區(qū)貯水引起的地殼形變與地震[A];第一次全國(guó)地震科學(xué)學(xué)術(shù)討論會(huì)論文摘要匯編[C];1979年
3 錢生華;;地球轉(zhuǎn)速變化、地殼形變與地震活動(dòng)[A];中國(guó)地震學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文摘要集[C];1998年
4 張永志;張克實(shí);;損傷裂紋對(duì)地殼形變的影響研究[A];中國(guó)地震學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文摘要集[C];1998年
5 何世海;;地殼形變預(yù)報(bào)地震的不確定性[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年
6 周碩愚;吳云;陳子林;;地殼形變圖象動(dòng)力學(xué)[A];1994年中國(guó)地球物理學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];1994年
7 王雪瑩;鄭海剛;洪德全;劉澤民;李軍輝;;郯廬帶中南段地殼形變特征[A];中國(guó)地震學(xué)會(huì)第14次學(xué)術(shù)大會(huì)專題[C];2012年
8 王雙緒;薛富平;李寧;;注重地質(zhì)構(gòu)造差異布局 提升地殼形變監(jiān)測(cè)能力[A];中國(guó)地震學(xué)會(huì)第14次學(xué)術(shù)大會(huì)專題[C];2012年
9 呂弋培;廖華;蘇琴;王蘭;;川滇菱形塊體邊界的現(xiàn)今地殼形變[A];中國(guó)地震學(xué)會(huì)第八次學(xué)術(shù)大會(huì)論文摘要集[C];2000年
10 杜方;;對(duì)川西地震重點(diǎn)防御區(qū)圈定中地殼形變異常依據(jù)的反思[A];中國(guó)地震學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文摘要集[C];1998年
相關(guān)重要報(bào)紙文章 前2條
1 宗合;海地,后續(xù)地震或?qū)⒏土襕N];地質(zhì)勘查導(dǎo)報(bào);2010年
2 木葉 記者 趙宇清;哈工大為地震電磁場(chǎng)提供計(jì)算模型[N];黑龍江日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 張磊;基于地殼形變監(jiān)測(cè)數(shù)據(jù)的地震危險(xiǎn)性研究[D];中國(guó)礦業(yè)大學(xué)(北京);2017年
2 張微;基于D-InSAR的杭州地區(qū)地殼形變監(jiān)測(cè)及機(jī)理研究[D];浙江大學(xué);2008年
3 符養(yǎng);中國(guó)大陸現(xiàn)今地殼形變與GPS坐標(biāo)時(shí)間序列分析[D];中國(guó)科學(xué)院研究生院(上海天文臺(tái));2002年
4 張林廣;地殼形變的GPS監(jiān)測(cè)分析與地震孕育規(guī)律研究[D];中國(guó)礦業(yè)大學(xué)(北京);2012年
5 陳建業(yè);汶川地震斷層帶傳輸性質(zhì)研究—對(duì)地震同震弱化作用的啟示[D];中國(guó)地震局地質(zhì)研究所;2015年
6 任雅瓊;斷層亞失穩(wěn)階段熱場(chǎng)演化的實(shí)驗(yàn)研究及野外應(yīng)用探索[D];中國(guó)地震局地質(zhì)研究所;2015年
7 鄒鎮(zhèn)宇;地表動(dòng)態(tài)大地測(cè)量資料反映的孕震斷層變形機(jī)制研究[D];中國(guó)地震局地質(zhì)研究所;2015年
8 張貴鋼;青藏東緣地殼形變特征及龍門山地區(qū)深部動(dòng)力機(jī)制研究[D];長(zhǎng)安大學(xué);2011年
9 李昌瓏;時(shí)間相依的地震危險(xiǎn)性區(qū)劃研究及應(yīng)用[D];中國(guó)地震局地球物理研究所;2016年
10 劉靜偉;基于歷史地震烈度資料的地震危險(xiǎn)性評(píng)估方法研究[D];中國(guó)地震局地質(zhì)研究所;2011年
相關(guān)碩士學(xué)位論文 前10條
1 吳波;環(huán)渤海地區(qū)地殼形變特征研究[D];中國(guó)測(cè)繪科學(xué)研究院;2015年
2 黃勇;利用高頻GPS數(shù)據(jù)研究中國(guó)大陸短周期地殼形變特征[D];中國(guó)地震局地震研究所;2012年
3 賀園園;地殼形變信息時(shí)空數(shù)據(jù)庫(kù)的應(yīng)用研究[D];西安科技大學(xué);2010年
4 張榮斗;基于GPS的四川地區(qū)地殼形變分析與研究[D];西南交通大學(xué);2008年
5 張永奇;基于GPS的長(zhǎng)江三角洲(江蘇域)現(xiàn)今地殼形變特征分析[D];長(zhǎng)安大學(xué);2011年
6 程晨健;基于灰色模型和GIS技術(shù)的地殼形變預(yù)測(cè)及運(yùn)動(dòng)研究[D];西北大學(xué);2012年
7 馬娜;基于GPS觀測(cè)資料的區(qū)域地殼形變—應(yīng)變特征研究[D];長(zhǎng)安大學(xué);2012年
8 葛恒年;GPS地殼形變監(jiān)測(cè)數(shù)據(jù)處理及大氣水汽含量反演計(jì)算的研究[D];河海大學(xué);2006年
9 王禹萌;地殼形變與火山活動(dòng)的對(duì)應(yīng)關(guān)系研究[D];東北師范大學(xué);2011年
10 武艷強(qiáng);高性能計(jì)算與GPS地殼形變信息提取[D];中國(guó)地震局地震預(yù)測(cè)研究所;2008年
,本文編號(hào):1900111
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1900111.html