甘肅崗岔金礦短波紅外找礦應(yīng)用及伊利石成因礦物學(xué)研究
本文選題:近紅外 + 蝕變礦物; 參考:《中國地質(zhì)大學(xué)(北京)》2015年碩士論文
【摘要】:甘肅崗岔金礦位于秦嶺造山帶碌曲—成縣逆沖推覆構(gòu)造帶西側(cè)北緣,屬于夏河—禮縣成礦帶西段,該礦床具有淺成低溫?zé)嵋旱V床特征,勘探工作顯示該礦床儲量已達(dá)中型。目前礦區(qū)處于深部找礦工作的初始階段,亟需一些找礦理論和方法為深部探礦工作提供支持。本文試圖采用近紅外蝕變礦物分析技術(shù)及成因礦物學(xué)與找礦礦物學(xué)理論和方法為礦區(qū)找礦工作提供依據(jù)。礦區(qū)蝕變礦物分析顯示,區(qū)內(nèi)主要蝕變礦物(相對百分含量大于5%)有白云母(多硅白云母)、伊利石、高嶺石、地開石、蒙脫石;次要蝕變礦物(相對百分含量小于5%)有綠泥石、綠簾石、方解石、白云石及少量石膏等。根據(jù)蝕變礦物空間上分布及含量變化規(guī)律,認(rèn)為近礦蝕變?yōu)榻佊r化(蝕變礦物組合為:白云母+伊利石+次生石英等);遠(yuǎn)礦蝕變?yōu)槟嗷蛘惩粱?蝕變礦物組合為:高嶺石+地開石+蒙脫石等)。礦區(qū)同種巖性(凝灰?guī)r或凝灰質(zhì)砂巖)、同一蝕變類型(絹英巖化)巖芯樣品分析表明,礦化段樣品光譜的診斷譜帶吸收峰較淺,吸收譜線多出現(xiàn)很多“鋸齒狀”小吸收峰,且光譜整體形態(tài)較為“扁平”;而非礦化段樣品的診斷譜帶吸收峰則較深,且光譜曲線形態(tài)上較為“光滑”。礦區(qū)絹英巖化帶蝕變礦物進(jìn)一步分析顯示,其中的絹云母主要為伊利石和少量白云母。不同產(chǎn)狀(礦化段、蝕變但無礦段、非蝕變段)伊利石的能譜成分分析顯示,礦化段伊利石具有較高的鐵、鎂含量;有蝕變而無礦化段及無蝕變段伊利石鐵、鎂含量較低。區(qū)內(nèi)標(biāo)型礦物伊利石紅外光譜特征峰分析結(jié)果表明:礦化段伊利石具有更尖銳的Al-OH吸收峰,且礦區(qū)伊利石近紅外結(jié)晶度變化與樣品金品位的變化具很好的正相關(guān)性。此外,礦化段樣品伊利石Al-OH吸收峰峰位明顯向長波方向(大于2200nm)漂移;非礦化段樣品伊利石Al-OH吸收峰向短波方向(小于2200nm)漂移,認(rèn)為導(dǎo)致這類層狀鋁硅酸鹽礦物Al-OH近紅外吸收峰峰位漂移現(xiàn)象的可能成因是:礦物中六次配位的Al離子被其它金屬離子(如Fe、Mg等)替代,導(dǎo)致礦物中Fe、Mg含量增高而Al含量降低。以上規(guī)律對于礦區(qū)深部找礦工作具有一定指導(dǎo)意義。
[Abstract]:Gangcha gold deposit is located in the northern margin of Luqu-Chengxian thrust and nappe tectonic belt in Qinling orogenic belt, and belongs to the western section of Xihe-Lixian metallogenic belt. The deposit has the characteristics of epithermal hydrothermal deposit, and the exploration work shows that the deposit reserves have reached medium size. At present, the mining area is in the initial stage of deep prospecting, which needs to be supported by some prospecting theories and methods. This paper attempts to use near infrared alteration mineral analysis technology and genetic mineralogy and prospecting mineralogy theory and method to provide the basis for ore prospecting in mining area. Analysis of altered minerals in the mining area shows that the major altered minerals in the area (the relative content of which is more than 5%) are Muscovite (polysilicon Muscovite, Illite, kaolinite, geocalite, montmorillonite; minor altered minerals (relative content less than 5%) have chlorite, Green curtain stone, calcite, dolomite and a small amount of gypsum, etc. According to the spatial distribution and content variation of altered minerals, It is considered that near ore alteration is sericite (altered mineral assemblage is Muscovite Illite secondary quartz etc.) distant ore alteration becomes muddy or clay (altered mineral assemblage is kaolinite montmorillonite etc.) The analysis of the core samples of the same lithology (tuff or tuff sandstone) and the same alteration type (sericite) shows that the absorption peaks of the diagnostic spectrum of the samples in the mineralized section are relatively shallow, and many "serrated" small absorption peaks appear in the absorption lines. The whole form of the spectrum is "flat", while the absorption peak of the diagnostic band of the non-mineralized sample is deeper, and the spectral curve is more "smooth" in shape. Further analysis of altered minerals in the sericite zone shows that the sericite is mainly Illite and a small amount of Muscovite. The energy spectrum analysis of Illite in different occurrence (mineralized, altered but not mineralized) shows that Illite has higher iron and magnesium content, and Illite iron with alteration but no mineralization and no alteration is lower in magnesium content. The results of infrared spectrum analysis of Illite show that Illite has a more sharp Al-OH absorption peak in the mineralized area and the near infrared crystallinity of Illite has a good positive correlation with the change of gold grade in the sample. In addition, the Al-OH absorption peak of Illite in the mineralized segment drifts towards the long wave direction (> 2200nmm), and the Al-OH absorption peak drifts to the shortwave direction (less than 2200nm) in the non-mineralized segment. It is considered that the possible cause of the near infrared peak shift of Al-OH absorption peak in this kind of layered aluminosilicate minerals is that the six times coordinated Al ions in the minerals are replaced by other metal ions (such as Feo mg, etc.), which results in the increase of Feo mg content and the decrease of Al content in the minerals. The above rules have certain guiding significance for the deep prospecting work in the mining area.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P618.51;P631.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李滿根;胡寶群;白麗紅;郭國林;王正其;王振興;;江西銀山礦伊利石化過程中圍巖化學(xué)成分變化及其成礦意義[J];大地構(gòu)造與成礦學(xué);2007年03期
2 潘桂棠;肖慶輝;陸松年;鄧晉福;馮益民;張克信;張智勇;王方國;邢光福;郝國杰;馮艷芳;;中國大地構(gòu)造單元劃分[J];中國地質(zhì);2009年01期
3 張國偉,郭安林,姚安平;中國大陸構(gòu)造中的西秦嶺—松潘大陸構(gòu)造結(jié)[J];地學(xué)前緣;2004年03期
4 章革,連長云,元春華;PIMA在云南普朗斑巖銅礦礦物識別中的應(yīng)用[J];地學(xué)前緣;2004年04期
5 趙利青;鄧軍;原海濤;李曉英;;臺上金礦床蝕變帶短波紅外光譜研究[J];地質(zhì)與勘探;2008年05期
6 修連存;鄭志忠;俞正奎;黃俊杰;殷靚;王彌建;張秋寧;黃賓;陳春霞;修鐵軍;陸帥;;近紅外光譜分析技術(shù)在蝕變礦物鑒定中的應(yīng)用[J];地質(zhì)學(xué)報;2007年11期
7 王宗起;閆全人;閆臻;王濤;姜春發(fā);高聯(lián)達(dá);李秋根;陳雋璐;張英利;劉平;謝春林;向忠金;;秦嶺造山帶主要大地構(gòu)造單元的新劃分[J];地質(zhì)學(xué)報;2009年11期
8 ;Illite Crystallinity Mapping of Very Low Grade Metamorphism of Triassic Metapelites in the Zoigê Area,Western China[J];Acta Geologica Sinica(English Edition);2012年01期
9 金章東,朱金初,季峻峰,李福春,盧新衛(wèi);德興斑巖銅礦田兩類伊利石的存在及其在蝕變分帶中的意義[J];高校地質(zhì)學(xué)報;2000年01期
10 張國偉,孟慶任,于在平,孫勇,周鼎武,郭安林;秦嶺造山帶的造山過程及其動力學(xué)特征[J];中國科學(xué)(D輯:地球科學(xué));1996年03期
相關(guān)博士學(xué)位論文 前1條
1 丁仨平;西秦嶺—祁連造山帶(東段)交接部位早古生代構(gòu)造格架及構(gòu)造演化[D];長安大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 戴倩倩;短波紅外光譜技術(shù)在山東乳山金礦的應(yīng)用和分析研究[D];中國地質(zhì)大學(xué)(北京);2009年
,本文編號:1898506
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1898506.html