攀枝花釩鈦磁鐵礦伴生元素鎵鈷鎳的富集規(guī)律
本文選題:層狀巖體 + 鎵; 參考:《成都理工大學(xué)》2017年碩士論文
【摘要】:攀枝花釩鈦磁鐵礦礦石有著豐富的有益元素,其中鐵、釩、鈦被開發(fā)利用,其他的稀有分散元素鎵、鈮、鍺、鈧以及伴生元素鈷、鎳、鉑族元素等,具有很高的經(jīng)濟(jì)價(jià)值,到目前為止,卻沒有被有效的利用。論文以《攀枝花市釩鈦磁鐵礦中伴生稀散元素概況研究》綜合研究項(xiàng)目為依托,以攀枝花釩鈦磁鐵礦朱家包包礦段為例,詳細(xì)分析了該礦段中巖礦石組構(gòu)、礦物成分和含量、地球化學(xué)特征。將攀枝花層狀巖體分成不同巖相帶,分析不同相帶鎵鈷鎳的分布特征。然后運(yùn)用相關(guān)分析和聚類分析方法,重點(diǎn)對(duì)不同巖相帶的鎵、鈷、鎳與主量元素、微量元素以及稀土元素的相關(guān)性和聚類性進(jìn)行分析,初步得出與鎵鈷鎳具有相關(guān)性的元素。進(jìn)而對(duì)攀枝花不同巖相帶中的鎵、鈷、鎳的富集規(guī)律進(jìn)行了綜合研究和探討。綜合得出以下的結(jié)論:(1)攀枝花層狀巖體中不同巖(礦)石的鎵含量由低到高分別為:輝石巖、斜長巖、輝長巖、磁鐵礦石;鈷含量由低到高分別為:斜長巖、輝長巖、輝石巖、磁鐵礦石。鈷在斜長巖中含量低,明顯低于其它幾類巖石,主要富集在塊狀磁鐵巖中;鎳含量由低到高分別為:斜長巖、輝石巖、輝長巖、磁鐵礦石,可以看出鎳主要富集在塊狀磁鐵礦石中。(2)不同巖相帶鎵含量由低到高分別為:邊緣帶—上部巖相帶—下部巖相帶—底部含礦帶;不同巖相帶鈷含量由低到高分別為:邊緣帶—上部巖相帶—下部巖相帶—在底部含礦帶;不同巖相帶鎳含量由低到高分別為:下部巖相帶—邊緣帶—上部巖相帶—底部含礦帶。(3)在攀枝花礦區(qū)巖石中,鎵與鈦、鐵、鈷、鋅具有顯著的正相關(guān)性,與硅負(fù)相關(guān)性顯著;鈷與鈦、鐵、鎵、釩、鋅元素具有顯著的正相關(guān)性,與硅、鍶負(fù)相關(guān)性顯著;鎳與鎂、鉻、鋅等元素呈現(xiàn)出好的正相關(guān)關(guān)系,與鋁等元素的負(fù)相關(guān)性顯著;鎵鈷鎳與稀土元素之間無明顯的關(guān)系。在磁鐵礦中,鎵與鈧、鈦負(fù)相關(guān)性好,鎵與鐵正相關(guān)性好。(4)綜合表明由底部向頂部,隨著巖漿由超基性向基性演化的過程中,SiO2含量的增加,以及TiO2等的減少,鎵總體呈現(xiàn)出逐漸減少的趨勢。在攀枝花地區(qū),鎵最富集的礦區(qū)為攀枝花礦區(qū),鎵富集巖石類型為富含磁鐵礦的輝長巖,鐵含量越高,越富集鎵,富集礦石為磁鐵礦石。攀鋼選礦過程中,鎵主要進(jìn)入鐵精礦。綜合來看,在鐵礦開發(fā)利用過程中,鎵具有很高的綜合利用價(jià)值。Co與Ni主要富集在硫化物相和磁鐵礦中,在對(duì)攀枝花釩鈦磁鐵礦綜合利用時(shí),也具有綜合利用價(jià)值。
[Abstract]:Panzhihua vanadium titanomagnetite ore is rich in beneficial elements, among which iron, vanadium and titanium are exploited and utilized. Other rare dispersed elements such as gallium, niobium, germanium, scandium and associated elements cobalt, nickel and platinum have high economic value. So far, it has not been used effectively. In this paper, based on the comprehensive research project "General situation of associated dilute elements in Panzhihua vanadium titanomagnetite" and taking the Zhujia-wrapped ore section of Panzhihua vanadium titanomagnetite as an example, the fabric, mineral composition and content of rock and ore in this section are analyzed in detail. Geochemical characteristics. Panzhihua layered rock mass is divided into different lithofacies zones and the distribution characteristics of gallium cobalt and nickel in different facies zones are analyzed. Then, the correlation and clustering of gallium, cobalt and nickel with major elements, trace elements and rare earth elements in different lithofacies zones were analyzed by correlation analysis and cluster analysis, and the elements with correlation with gallium, cobalt and nickel were preliminarily obtained. Furthermore, the enrichment law of gallium, cobalt and nickel in different lithofacies zones of Panzhihua is studied and discussed. The conclusion is as follows: (1) the gallium content of different rocks (ore) in Panzhihua stratified rock is from low to high: pyroxenite, clinoclase, gabbro, magnetite, cobalt content from low to high are: clinoclase, pyroxenite, Magnetite. The content of cobalt in the plagioclase is low, which is obviously lower than that of other rocks, and is mainly concentrated in the massive magnetite, and the nickel content from low to high is: clinoclase, pyroxenite, gabbro, magnetite, etc. It can be seen that nickel is mainly enriched in massive magnetite.) the gallium content in different lithofacies zones from low to high is: marginal zone, upper lithofacies zone, lower lithofacies zone and bottom ore-bearing belt; The cobalt content in different lithofacies zones from low to high is: marginal zone-upper lithofacies zone-lower lithofacies zone-ore-bearing belt at the bottom; The nickel content of different lithofacies zones from low to high is: lower lithofacies zone, marginal zone, upper lithofacies belt and bottom ore-bearing belt. In Panzhihua mining area, gallium has significant positive correlation with titanium, iron, cobalt and zinc, and significant negative correlation with silicon. Cobalt has significant positive correlation with titanium, iron, gallium, vanadium, zinc, and negative correlation with silicon, strontium, nickel and magnesium, chromium, zinc, etc. There is no obvious relationship between gallium, cobalt, nickel and rare earth elements. In magnetite, the negative correlation between gallium and scandium and titanium, and the positive correlation between gallium and iron are good. The results show that the content of SiO2 increases with the evolution of magma from ultrabasic to basic, and the content of SiO2 decreases with the change of magma from the bottom to the top, as well as the decrease of TiO2, etc. The gallium as a whole shows a decreasing trend. In Panzhihua area, the most enriched gallium ore area is Panzhihua mining area. The gallium enriched rock type is magnetite rich gabbro. The higher the iron content is, the more gallium is enriched and the rich ore is magnetite. During the processing of Panzhihua Iron and Steel Company, gallium mainly enters iron concentrate. In the process of development and utilization of iron ore, gallium has high comprehensive utilization value. Co and Ni are mainly enriched in sulphide phase and magnetite, and also have comprehensive utilization value in the comprehensive utilization of Panzhihua vanadium titanomagnetite.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P574
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;釩鈦磁鐵礦中鎳、鈷、鉻、銅、釩的光譜測定[J];地球化學(xué);1972年03期
2 ;釩鈦磁鐵礦綜合利用重點(diǎn)實(shí)驗(yàn)室[J];大自然探索;1998年02期
3 龔榮洲,於崇文,岑況;成礦元素富集機(jī)制的量子地球化學(xué)研究——以攀枝花釩鈦磁鐵礦礦床為例[J];地學(xué)前緣;2000年01期
4 肖六均;攀枝花釩鈦磁鐵礦資源及礦物磁性特征[J];金屬礦山;2001年01期
5 宋新艷;;過氧化氫光度法測定釩鈦磁鐵礦中二氧化鈦[J];冶金分析;2006年05期
6 趙琰;郭科;;基于灰色系統(tǒng)算法在攀枝花釩鈦磁鐵礦預(yù)測中的應(yīng)用[J];物探化探計(jì)算技術(shù);2007年04期
7 劉英俊;釩鈦磁鐵礦礦石結(jié)構(gòu)構(gòu)造與綜合利用的關(guān)系[J];地質(zhì)地球化學(xué);1979年09期
8 吳本羨;;釩鈦磁鐵礦主要有益元素賦存狀態(tài)的研究與綜合利用[J];礦物巖石;1982年01期
9 傅文章;攀西釩鈦磁鐵礦資源特征及綜合利用問題的基本分析[J];礦產(chǎn)綜合利用;1996年01期
10 蔣薇;X射線熒光光譜法測定釩鈦磁鐵礦成分[J];光譜實(shí)驗(yàn)室;2005年05期
相關(guān)會(huì)議論文 前10條
1 徐爭啟;;攀枝花釩鈦磁鐵礦區(qū)水系沉積物的組成及重金屬特征[A];中國礦物巖石地球化學(xué)學(xué)會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2009年
2 陳廷愚;NI苊,
本文編號(hào):1876029
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1876029.html