單軸拉伸條件下田下凝灰?guī)r力學(xué)特性時(shí)間效應(yīng)試驗(yàn)研究
本文選題:直接拉伸 + 時(shí)間效應(yīng) ; 參考:《重慶大學(xué)》2015年碩士論文
【摘要】:眾所周知,由于巖石變形損傷引發(fā)的諸如巖爆、地基開裂、滑坡等工程災(zāi)害存在著明顯的時(shí)效性,即巖土工程災(zāi)害并不一定在工程建設(shè)過程中或項(xiàng)目建成運(yùn)行較短時(shí)間內(nèi)發(fā)生,而往往會(huì)經(jīng)歷不等的時(shí)間,故探究巖石力學(xué)特性的時(shí)間效應(yīng)對(duì)減少和避免相關(guān)工程災(zāi)害有著十分重要意義。由于當(dāng)前巖石時(shí)間效應(yīng)的研究主要集中于壓縮,拉應(yīng)力作用下的時(shí)間效應(yīng)研究非常的匱乏,而巖石在許多工程條件下都處于拉應(yīng)力狀態(tài),所以研究巖石拉應(yīng)力條件下時(shí)間效應(yīng)的工程指導(dǎo)意義尤為突出。本文選用日本的田下凝灰?guī)r作為研究對(duì)象,在學(xué)習(xí)總結(jié)前人研究基礎(chǔ)上,研發(fā)了適用于巖石直接拉伸試驗(yàn)的單軸拉伸試驗(yàn)系統(tǒng),在傳統(tǒng)的應(yīng)力控制、應(yīng)變控制基礎(chǔ)上實(shí)現(xiàn)了應(yīng)力應(yīng)變的線性組合—應(yīng)力歸還法控制;進(jìn)行了恒定荷載率直接拉伸試驗(yàn)、交替荷載速率直接拉伸試驗(yàn),在應(yīng)力歸還法控制的基礎(chǔ)上進(jìn)行了廣義應(yīng)力松弛試驗(yàn)(應(yīng)力應(yīng)變同時(shí)改變,但應(yīng)力應(yīng)變的線性組合不變),以及蠕變?cè)囼?yàn)、松弛試驗(yàn);針對(duì)田下凝灰?guī)r的直接拉伸試驗(yàn)和廣義應(yīng)力松弛的特性,選取合適的本構(gòu)模型—可變模量非線性粘彈性本構(gòu)模型,根據(jù)直接拉伸試驗(yàn)和廣義應(yīng)力松弛試驗(yàn)確定本構(gòu)模型中的參數(shù),最后進(jìn)行模型計(jì)算結(jié)果的驗(yàn)證。取得主要結(jié)論如下:1)試驗(yàn)研究了直接拉伸條件下恒定荷載試驗(yàn)、交替荷載試驗(yàn)的基本力學(xué)參數(shù)荷載速率依存性,結(jié)果表明:田下凝灰?guī)r恒定荷載速率試驗(yàn)的抗拉強(qiáng)度σt的荷載依存指數(shù)為0.0214,楊氏模量E的荷載依存指數(shù)為0.0087,破壞應(yīng)變?chǔ)舤的荷載速率依存指數(shù)為0.0129,非彈性應(yīng)變不具有荷載速率依存性,破壞時(shí)的非彈性應(yīng)變約為0.4×10-3,交替荷載速率試驗(yàn)獲得的強(qiáng)度值及荷載速率依存性與恒定荷載試驗(yàn)十分接近,交替荷載試驗(yàn)?zāi)茌^好的替代恒定荷載試驗(yàn);2)試驗(yàn)研究了不同應(yīng)力水平的拉伸蠕變?cè)囼?yàn)、不同應(yīng)變水平的拉伸松弛試驗(yàn),同一啟動(dòng)點(diǎn)不同方向的廣義應(yīng)力松弛試驗(yàn)的流變特性,得到結(jié)果:拉伸蠕變?cè)囼?yàn)的蠕變應(yīng)變與時(shí)間的關(guān)系式、蠕變速率與時(shí)間的關(guān)系式,拉伸松弛試驗(yàn)中應(yīng)力降與時(shí)間的關(guān)系式、松弛速率與時(shí)間的關(guān)系式,分析相同啟動(dòng)點(diǎn)不同方向的的廣義應(yīng)力松弛特性,經(jīng)歷相同的流變時(shí)間時(shí),方向角越小,廣義應(yīng)力松弛的應(yīng)變變化量、應(yīng)力變化量和非彈性應(yīng)變變化量均隨著方向角的增加而減小,得到了廣義應(yīng)力松弛等時(shí)曲線,可以預(yù)測(cè)不同啟動(dòng)點(diǎn)、不同方向的廣義應(yīng)力松弛試驗(yàn);3)選取適合田下凝灰?guī)r直接拉伸條件下的本構(gòu)模型,解析得到本構(gòu)方程,確定了本構(gòu)模型中的6個(gè)參數(shù)a1=1,a2=0.0001,m1=43,m2=20,n1=n2=46,并用該本構(gòu)模型成功的模擬了直接拉伸作用下田下凝灰?guī)r不同速率的全應(yīng)力應(yīng)變?cè)囼?yàn)以及不同應(yīng)力水平的蠕變?cè)囼?yàn),計(jì)算結(jié)果和試驗(yàn)結(jié)果一致性較好。
[Abstract]:As we all know, engineering disasters such as rock burst, foundation cracking, landslide and other engineering disasters caused by rock deformation damage have obvious timeliness, that is, geotechnical engineering disasters do not necessarily occur in the process of engineering construction or in a short period of time when the project is completed and run. Therefore, it is very important to explore the time effect of rock mechanical properties to reduce and avoid engineering disasters. Due to the fact that the study of the time effect of rock is mainly concentrated on compression, the study of time effect under tension stress is very scarce, and the rock is in the state of tensile stress under many engineering conditions. So it is very important to study the time effect under rock tensile stress. In this paper, Tanaka tuff from Japan is selected as the object of study. On the basis of studying and summarizing previous studies, a uniaxial tensile test system suitable for direct tensile test of rock is developed, which is under traditional stress control. On the basis of strain control, the linear combinatorial stress-strain control method is realized, and the constant load rate direct tensile test and alternating load rate direct tensile test are carried out. Based on the control of the stress return method, the generalized stress relaxation test is carried out (the stress and strain changes simultaneously, but the linear combination of stress and strain remains unchanged, as well as creep test and relaxation test; According to the direct tensile test of tuff and the characteristics of generalized stress relaxation, a suitable constitutive model-variable modulus nonlinear viscoelastic constitutive model is selected. The parameters of the constitutive model are determined by direct tensile test and generalized stress relaxation test. Finally, the calculation results of the model are verified. The main conclusions are as follows: (1) the dependence of load rate on the basic mechanical parameters of constant load test and alternating load test under direct tensile condition is studied. The results show that the load-dependent exponent of tensile strength 蟽 _ t is 0.0214, Young's modulus E is 0.0087, failure strain 蔚 _ t is 0.0129, and inelastic strain is not available. With load rate dependence, The inelastic strain during failure is about 0.4 脳 10 ~ (-3). The strength and load rate dependence of alternating load rate test is very close to that of constant load test. Alternating load test is a good alternative to constant load test. The rheological properties of tensile creep test with different stress levels, tensile relaxation tests with different strain levels and generalized stress relaxation tests with different directions at the same starting point are studied. The results are as follows: the relationship between creep strain and time, creep rate and time, stress drop and time, relaxation rate and time in tensile creep test. The generalized stress relaxation characteristics in different directions at the same starting point are analyzed. When the flow time is the same, the smaller the direction angle, the strain variation of the generalized stress relaxation. The variation of stress and inelastic strain decrease with the increase of direction angle. The generalized stress relaxation isochron curve can be used to predict different starting points. The constitutive model suitable for direct stretching of tuff in different directions is selected, and the constitutive equation is obtained. The six parameters of the constitutive model a _ (1) 1 ~ (1) A ~ (2 +) ~ (0.0001) / m ~ (-1) ~ (43) m ~ (2) ~ (2) ~ (20) ~ (1) ~ (1) ~ (1) ~ (1) N ~ (21) N ~ (21) ~ 4 ~ (-6) were determined. By using the constitutive model, the full stress-strain tests at different rates of tuff and creep tests at different stress levels were successfully simulated The calculated results are in good agreement with the experimental results.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐浩峰;應(yīng)宏偉;朱向榮;;某軟土深基坑工程時(shí)間效應(yīng)有限元分析[J];工程地質(zhì)學(xué)報(bào);2007年01期
2 李國松;王憲忠;白志強(qiáng);楊文彬;姜義宏;宮丹丹;;關(guān)于單樁承載力的時(shí)間效應(yīng)淺析[J];吉林地質(zhì);2010年01期
3 季明;高峰;高亞楠;顧宏星;;灰質(zhì)泥巖遇水膨脹的時(shí)間效應(yīng)研究[J];中國礦業(yè)大學(xué)學(xué)報(bào);2010年04期
4 陳建永;王繼榮;姚國蘭;;軟土深基坑變形性狀的時(shí)間效應(yīng)研究[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2011年02期
5 寧寶寬,陳四利,劉斌;環(huán)境侵蝕下水泥土力學(xué)特性的時(shí)間效應(yīng)分析[J];水文地質(zhì)工程地質(zhì);2005年02期
6 劉曉麗;王思敬;王恩志;薛強(qiáng);;含時(shí)間效應(yīng)的膨脹巖膨脹本構(gòu)關(guān)系[J];水利學(xué)報(bào);2006年02期
7 劉方平,,薛以樂,步燕芳,施永德,楊景文,樂忠慶;對(duì)血液粘度測(cè)定的溫度和時(shí)間效應(yīng)的研究[J];南京師大學(xué)報(bào)(自然科學(xué)版);1995年02期
8 李明;張嘎;李焯芬;張建民;;多次開挖條件下邊坡變形的時(shí)間效應(yīng)分析[J];世界地震工程;2010年S1期
9 徐浩峰;應(yīng)宏偉;朱向榮;;考慮固結(jié)和流變耦合作用的基坑工程時(shí)間效應(yīng)[J];科技通報(bào);2008年01期
10 許宏發(fā);軟巖強(qiáng)度和彈模的時(shí)間效應(yīng)研究[J];巖石力學(xué)與工程學(xué)報(bào);1997年03期
相關(guān)會(huì)議論文 前9條
1 李韜;高大釗;顧國榮;;沉降控制復(fù)合樁基“時(shí)間效應(yīng)”的簡(jiǎn)化力學(xué)模型分析[A];2004年度上海市土力學(xué)與巖土工程學(xué)術(shù)年會(huì)論文集[C];2004年
2 林衛(wèi)星;;高填土沉降估算及沉降的時(shí)間效應(yīng)[A];2004年度上海市土力學(xué)與巖土工程學(xué)術(shù)年會(huì)論文集[C];2004年
3 武圣君;苗丹民;;連續(xù)加法的時(shí)間效應(yīng)[A];第十屆全國心理學(xué)學(xué)術(shù)大會(huì)論文摘要集[C];2005年
4 崔春義;欒茂田;楊慶;年廷凱;;結(jié)構(gòu)-樁筏-地基體系時(shí)間效應(yīng)的三維數(shù)值分析[A];第一屆中國水利水電巖土力學(xué)與工程學(xué)術(shù)討論會(huì)論文集(下冊(cè))[C];2006年
5 文志杰;陳連軍;尹立明;王榮超;;巖層明顯運(yùn)動(dòng)時(shí)間效應(yīng)分析研究[A];巖石力學(xué)與工程的創(chuàng)新和實(shí)踐:第十一次全國巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2010年
6 亢一瀾;王娟;;考慮時(shí)間效應(yīng)的軟材料黏接界面力學(xué)模型與實(shí)驗(yàn)表征[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
7 周健;葉建忠;;大面積淺層地基處理新方法研究及其工程應(yīng)用[A];中國土木工程學(xué)會(huì)第九屆土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2003年
8 曾祥龍;劉翔平;;情緒的時(shí)間效應(yīng)認(rèn)知問卷和情緒的趨避態(tài)度問卷的初步編制[A];增強(qiáng)心理學(xué)服務(wù)社會(huì)的意識(shí)和功能——中國心理學(xué)會(huì)成立90周年紀(jì)念大會(huì)暨第十四屆全國心理學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年
9 劉謙;孔德坊;;某工程軟巖強(qiáng)度的時(shí)間效應(yīng)研究[A];全國第三次工程地質(zhì)大會(huì)論文選集(上卷)[C];1988年
相關(guān)碩士學(xué)位論文 前10條
1 侯振斌;土體變形時(shí)間效應(yīng)特性及加載歷史累加—遺傳修正技術(shù)研究[D];西南交通大學(xué);2015年
2 馬春景;考慮流—固耦合與時(shí)間效應(yīng)影響的隧道穩(wěn)定性分析[D];大連海事大學(xué);2016年
3 金雯婷;基于時(shí)間效應(yīng)的網(wǎng)上商場(chǎng)推薦系統(tǒng)研究與應(yīng)用[D];廣東工業(yè)大學(xué);2016年
4 金榮;基于時(shí)間效應(yīng)基坑變形特性分析[D];遼寧工程技術(shù)大學(xué);2014年
5 趙開;單軸拉伸條件下田下凝灰?guī)r力學(xué)特性時(shí)間效應(yīng)試驗(yàn)研究[D];重慶大學(xué);2015年
6 陳光仔;時(shí)間效應(yīng)對(duì)土體小應(yīng)變動(dòng)力特性影響及其細(xì)觀機(jī)理研究[D];浙江大學(xué);2013年
7 談構(gòu);三軸狀態(tài)下結(jié)構(gòu)時(shí)間效應(yīng)計(jì)算方法[D];華中科技大學(xué);2006年
8 丁海軍;砂土液化時(shí)間效應(yīng)的剪切波速表征研究[D];浙江大學(xué);2015年
9 孫芳;預(yù)應(yīng)力砼管樁土塞效應(yīng)對(duì)單樁承載力影響的研究[D];昆明理工大學(xué);2010年
10 徐美娟;考慮時(shí)間效應(yīng)的復(fù)合樁基簡(jiǎn)化分析方法[D];南京工業(yè)大學(xué);2005年
本文編號(hào):1808155
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1808155.html