預(yù)應(yīng)力格構(gòu)錨固體系模擬試驗(yàn)研究
本文選題:預(yù)應(yīng)力 + 錨索格構(gòu)梁 ; 參考:《長安大學(xué)》2015年碩士論文
【摘要】:近年來,國家基礎(chǔ)設(shè)施建設(shè)發(fā)展迅猛,隨著公路、鐵路,城市建設(shè)工程的大規(guī)模開展,不可避免地要進(jìn)行邊坡開挖,由于處理不當(dāng),釀成了許多人工滑坡,目前對(duì)于滑坡防治的方法眾多。格構(gòu)梁錨固體系作為一種新型滑坡防治技術(shù),具有施工便捷、造價(jià)合理及安全可靠等優(yōu)點(diǎn),搭配植被還有美化坡面的效果,因而在近年的滑坡防治工程設(shè)計(jì)中被廣泛應(yīng)用。為了研究框架梁錨固體系中框架梁-錨索-巖土體復(fù)合結(jié)構(gòu)的受力特點(diǎn),以及框架梁之間、梁與錨索之間的相互作用機(jī)理,為后續(xù)研究提供參考,同時(shí)為工程設(shè)計(jì)提出合理化建議,本文作了以下具體研究工作:1)以課題組承擔(dān)的格構(gòu)錨固大型物理模型試驗(yàn)[1]為研究背景,結(jié)合物理模型試驗(yàn)的設(shè)計(jì)方法和實(shí)測參數(shù),首先用ANSYS軟件建立了滑坡基本模型,合理劃分模型網(wǎng)格,再利用FLAC-3D(巖土數(shù)值模擬軟件)對(duì)錨索-格構(gòu)支護(hù)體系進(jìn)行三維數(shù)值模擬計(jì)算。2)開展了滑坡基本模型試驗(yàn)研究,在基本模型試驗(yàn)的基礎(chǔ)上,對(duì)所進(jìn)行的非預(yù)應(yīng)力錨索格構(gòu)試驗(yàn)進(jìn)行模擬,對(duì)獲得的模擬試驗(yàn)數(shù)據(jù)進(jìn)行分析。隨后對(duì)錨索施加預(yù)應(yīng)力,分別對(duì)正方型格構(gòu)-正方形截面、正方型格構(gòu)-矩形截面、矩型格構(gòu)-正方形截面、矩型格構(gòu)-矩形截面等不同截面尺寸的錨索格構(gòu)進(jìn)行模擬分析。3)在以上格構(gòu)形式研究的基礎(chǔ)上,又對(duì)預(yù)應(yīng)力錨固下的菱型格構(gòu)、人字型格構(gòu)以及拱型格構(gòu)做了計(jì)算分析,研究了各格構(gòu)類型隨滑坡作用時(shí)的應(yīng)變分布、應(yīng)力分布規(guī)律,重點(diǎn)分析了錨索單元和格構(gòu)梁單元的受力規(guī)律、變化特性以及破壞模式,預(yù)應(yīng)力損失,同時(shí)分析了人字型格構(gòu)和拱型格構(gòu)梁所受的扭矩。4)將模擬計(jì)算結(jié)果與解析法所得格構(gòu)梁內(nèi)力計(jì)算結(jié)果、物理模型試驗(yàn)結(jié)果進(jìn)行分析驗(yàn)證。對(duì)各計(jì)算結(jié)構(gòu)匯總分析,闡明了格構(gòu)梁最易破壞點(diǎn),錨索所受最大軸力位置等關(guān)鍵問題,為實(shí)際工程設(shè)計(jì)提出了一些建議。
[Abstract]:In recent years, the construction of national infrastructure has developed rapidly. With the large-scale development of highway, railway and urban construction projects, slope excavation is inevitable. As a result of improper handling, many artificial landslides have resulted. At present, there are many methods for landslide prevention. As a new type of landslide prevention and control technology, lattice beam Anchorage system has the advantages of convenient construction, reasonable cost, safe and reliable, and so on. It has been widely used in landslide prevention and control engineering design in recent years because of the combination of vegetation and the effect of beautifying the slope surface. In order to study the mechanical characteristics of frame beam-cable rock-soil composite structure in frame beam Anchorage system, as well as the interaction mechanism between frame beam and anchor cable, this paper provides a reference for further research. At the same time, some reasonable suggestions for engineering design are put forward. The following specific research work is done: 1) based on the large-scale physical model test of lattice Anchorage undertaken by the research group, the design method and the measured parameters of the physical model test are combined. At first, the basic landslide model is established by ANSYS software, and the model grid is reasonably divided, and then the basic landslide model test is carried out by using FLAC-3D (geotechnical numerical simulation software) to carry out three-dimensional numerical simulation calculation of anchor cable lattice support system. On the basis of the basic model test, the unprestressed cable lattice test is simulated, and the obtained simulation test data are analyzed. Then the prestressed cable is applied to square lattice-square section, square lattice-rectangular section, rectangular lattice-square section, On the basis of the study of the above lattice form, the rhombohedral lattice structure, the herringbone lattice structure and the arch lattice structure under prestressed Anchorage are calculated and analyzed. The strain distribution and stress distribution of each lattice structure type with the action of landslide are studied. The stress law, variation characteristic, failure mode and prestress loss of anchor cable element and lattice beam element are analyzed emphatically. At the same time, the torsion. 4) the internal force of the lattice beam obtained by the analytical method and the simulation results are analyzed and verified by the physical model test. Based on the summary and analysis of each computational structure, some key problems, such as the most easily damaged point of lattice beam and the position of maximum axial force of anchor cable, are clarified, and some suggestions for practical engineering design are put forward.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P642.22;TU476
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 阮志新;;預(yù)應(yīng)力錨索的預(yù)應(yīng)力損失機(jī)理分析與研究[J];黑龍江交通科技;2011年10期
2 吳榮燕,呂小平;框架錨索中框架內(nèi)力計(jì)算的差分法[J];四川建筑;2003年04期
3 席光勇;;錨索預(yù)應(yīng)力損失的分析與探討[J];鐵道標(biāo)準(zhǔn)設(shè)計(jì);2006年07期
4 鄭靜;朱本珍;;邊坡錨索結(jié)構(gòu)的失效因素與破壞類型[J];鐵道工程學(xué)報(bào);2010年01期
5 王志儉;萬誠;趙家成;;格構(gòu)梁剛度及地基變形模量對(duì)格構(gòu)梁彎矩的影響研究[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
6 張發(fā)明,劉寧,陳祖煜,趙維炳;影響大噸位預(yù)應(yīng)力長錨索錨固力損失的因素分析[J];巖土力學(xué);2003年02期
相關(guān)博士學(xué)位論文 前2條
1 張選利;柔性注壓錨桿錨固特性研究[D];遼寧工程技術(shù)大學(xué);2010年
2 呂慶;邊坡工程災(zāi)害防治技術(shù)研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 葉惠飛;錨索預(yù)應(yīng)力損失變化規(guī)律分析[D];浙江大學(xué);2004年
2 劉晶晶;多節(jié)點(diǎn)加載預(yù)應(yīng)力錨索格構(gòu)梁模型試驗(yàn)研究[D];成都理工大學(xué);2006年
3 李懷志;預(yù)應(yīng)力錨索格構(gòu)梁受力分析[D];貴州大學(xué);2009年
,本文編號(hào):1801507
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1801507.html