基于OFDM通信的超聲掃描成像測(cè)井儀
本文選題:超聲成像 + 正交頻分復(fù)用; 參考:《沈陽工業(yè)大學(xué)》2015年碩士論文
【摘要】:測(cè)井是油氣田勘探開發(fā)過程中取得地質(zhì)信息、檢測(cè)井壁破損情況的重要手段。一個(gè)完整的測(cè)井系統(tǒng)包括采集、傳輸、分析、儲(chǔ)存等功能,主要由井下儀器、數(shù)據(jù)傳輸、地面儀器、輔助設(shè)備等四部分組成。隨著測(cè)井技術(shù)的飛速發(fā)展,大量的井下儀器需要將數(shù)據(jù)實(shí)時(shí)傳送到地面儀器中。單芯電纜在提供井下儀器供電的同時(shí),還需要實(shí)現(xiàn)井下儀器與地面設(shè)備的數(shù)據(jù)傳輸與命令控制。由于測(cè)井電纜信道環(huán)境惡劣,因此測(cè)井電纜傳輸數(shù)據(jù)可用的頻帶范圍比較窄。為了將井下測(cè)量的結(jié)構(gòu)質(zhì)量的物理量實(shí)時(shí)地傳輸?shù)骄咸幚,提高單芯電纜的利用率,采用正交頻分復(fù)用技術(shù)來解決這些問題。 超聲波成像測(cè)井儀由井下超聲探頭發(fā)送超聲波,通過對(duì)超聲回波的檢測(cè),從而得到被測(cè)井物理?yè)p傷等特性。由于通信速率的限制,井下通信設(shè)備不能直接將掃描的模擬量發(fā)送到井上儀器,需要先對(duì)測(cè)井?dāng)?shù)據(jù)進(jìn)行有效數(shù)據(jù)提取和數(shù)據(jù)壓縮,通過發(fā)送電路將數(shù)據(jù)編碼后載波到單芯電纜上,從而將數(shù)據(jù)高速地傳送到地面儀器中。地面儀器對(duì)數(shù)據(jù)解調(diào)后傳送到上位機(jī)中,通過上位機(jī)進(jìn)行解碼并顯示,直觀顯示出井壁厚度損傷等物理狀況。本井壁超聲成像測(cè)井儀主要是對(duì)檢測(cè)油井井壁和其水泥膠情況的專用儀器,滿足了對(duì)體積、溫度等苛刻要求的現(xiàn)場(chǎng)環(huán)境要求,系統(tǒng)穩(wěn)定可靠,,有一定的的實(shí)用和參考價(jià)值。 本文介紹了正交頻分復(fù)用技術(shù),并對(duì)其子載波調(diào)制與解調(diào)做出了仿真與實(shí)驗(yàn),同時(shí)對(duì)生產(chǎn)測(cè)井信道進(jìn)行了分析與仿真。充分利用單芯電纜的頻帶寬度,提高了單芯測(cè)井電纜上的通信速率。在此基礎(chǔ)上,設(shè)計(jì)了一套超聲波測(cè)井儀的發(fā)射接收電路和數(shù)據(jù)傳輸電路。其中井下儀器的發(fā)射接收電路包括升壓電路、激勵(lì)電路、限幅電路、放大電路、濾波電路。傳輸電路包括耦合電路、濾波電路、模擬前端電路、調(diào)制解調(diào)電路、接口電路組成。試驗(yàn)表明,通過收發(fā)電路可以測(cè)得試件厚度并通過通信電路的調(diào)制與解調(diào),測(cè)井電纜可以在電力傳輸?shù)耐瑫r(shí),可以提供高速、可靠的數(shù)據(jù)傳輸。檢測(cè)電路可以完成對(duì)被測(cè)試件的超聲波檢測(cè),有一定的參考價(jià)值。
[Abstract]:Logging is an important means to obtain geological information and detect the damage of wellbore in the process of oil and gas field exploration and development. A complete logging system consists of four parts: acquisition, transmission, analysis and storage. It is mainly composed of downhole instruments, data transmission, surface instruments and auxiliary equipment. With the rapid development of logging technology, a large number of downhole tools need to transmit data to surface instruments in real time. While the single core cable provides power supply for underground instruments, it also needs to realize the data transmission and command control between underground instruments and surface equipment. Because of the poor environment of logging cable channel, the band range of cable transmission data is narrow. In order to transmit the physical quantity of structural quality measured in downhole to the well in real time and improve the utilization ratio of single core cable, orthogonal frequency division multiplexing (OFDM) technique is used to solve these problems. The ultrasonic imaging logging tool sends the ultrasonic wave from the downhole ultrasonic probe and obtains the physical damage characteristics of the logging by detecting the ultrasonic echo. Due to the limitation of the communication rate, the downhole communication equipment can not directly send the scanned analog quantity to the well tool, so it is necessary to extract and compress the logging data effectively. The data is transmitted to the ground instrument at high speed by sending the coded carrier to the single core cable. The data are demodulated and transmitted to the upper computer by the ground instrument. The physical condition such as the damage of wellbore thickness is displayed directly by decoding and displaying by the upper computer. The well wall ultrasonic imaging logging tool is mainly a special instrument for detecting well lining and its cement glue. It meets the field environmental requirements such as volume, temperature, etc. The system is stable and reliable, and has certain practical and reference value. This paper introduces orthogonal Frequency Division Multiplexing (OFDM) technology, and simulates and tests its subcarrier modulation and demodulation, and analyzes and simulates the production logging channel. The frequency band width of single core cable is fully utilized and the communication rate on single core logging cable is improved. On the basis of this, a set of transmitting and receiving circuit and data transmission circuit of ultrasonic logging tool are designed. The transmitting and receiving circuits of downhole instruments include boost circuit, excitation circuit, limiting circuit, amplifier circuit and filter circuit. The transmission circuit consists of coupling circuit, filtering circuit, analog front-end circuit, modulation and demodulation circuit and interface circuit. The experiment shows that the thickness of the sample can be measured by the transceiver circuit and the modulation and demodulation of the communication circuit. The logging cable can provide high speed and reliable data transmission while the electric power is transmitted. The detection circuit can complete the ultrasonic detection of the tested parts, which has certain reference value.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P631.83
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董惠娟;李瑞敏;張廣玉;張松柏;;單芯測(cè)井電纜頻率特性分析[J];光纖與電纜及其應(yīng)用技術(shù);2008年06期
2 馮勇強(qiáng);蘇之山;陳華;劉超攀;羅世杰;薛深木;;集控節(jié)能型樓宇供熱供冷系統(tǒng)—電氣裝置的研制[J];大眾科技;2014年01期
3 劉亮平;;基于以太網(wǎng)技術(shù)的網(wǎng)絡(luò)智能傳感器研究[J];信息安全與技術(shù);2011年08期
4 馮水鋒;周曉軍;張楊;楊辰龍;;基于特征提取和Delta編碼的超聲波數(shù)據(jù)壓縮方法[J];計(jì)算機(jī)工程與應(yīng)用;2011年26期
5 耿強(qiáng);黃雪琴;;基于IRIS軟件的FTP協(xié)議分析[J];科技信息;2012年19期
6 傅元;呂麒鵬;;核磁共振測(cè)井儀發(fā)射電路研究[J];化工自動(dòng)化及儀表;2013年05期
7 沈亞勇;張宇翔;趙豫斌;鄒劍雄;陳少佳;李月華;;基于FPGA的電荷測(cè)量系統(tǒng)設(shè)計(jì)[J];核電子學(xué)與探測(cè)技術(shù);2013年04期
8 王民川;;OFDM系統(tǒng)及仿真實(shí)現(xiàn)方法[J];民營(yíng)科技;2011年08期
9 薛梅,楚澤涵,姜皓;聲波測(cè)井儀器發(fā)展評(píng)述[J];石油儀器;2000年05期
10 譚廷棟;測(cè)井高技術(shù)的發(fā)展與進(jìn)步[J];天然氣工業(yè);1998年01期
相關(guān)博士學(xué)位論文 前1條
1 伍瑞卿;電纜傳輸測(cè)井高速網(wǎng)絡(luò)中關(guān)鍵問題的研究[D];電子科技大學(xué);2010年
本文編號(hào):1778667
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1778667.html