高植被區(qū)多源遙感數(shù)據(jù)蝕變信息提取與分析
本文選題:蝕變信息 切入點:遙感 出處:《成都理工大學》2017年碩士論文
【摘要】:在進行礦產資源勘查時人們通常利用多源遙感數(shù)據(jù)提取與礦化有關的蝕變信息,以達到對成礦有利靶區(qū)的圈定或預測。在植被覆蓋區(qū)能否最大程度的降低植被對礦化信息提取的干擾,將會對成礦有利靶區(qū)的準確圈定或預測產生巨大的影響。本研究所選擇的區(qū)域位于貴州省馬溪幅與施秉幅,該地區(qū)礦產資源相對豐富,但植被覆蓋度高,采用遙感對蝕變信息進行提取難度較大。針對這一難題,本研究選擇植被覆蓋度+掩膜、混合像元分解兩種降低植被影響的方法,以ASTER與Hyperion為基礎數(shù)據(jù)源,分別完成該地區(qū)礦化蝕變信息提取,并對提取結果進行綜合對比分析,以篩選出最適合于研究區(qū)蝕變信息提取方法,同時也為其它類似區(qū)域遙感蝕變信息提取提供科學參考。本論文主要開展了如下工作:(1)通過數(shù)字圖像處理方法對ASTER與Hyperion數(shù)據(jù)進行預處理。筆者采用ENVI軟件提供的FLAASH模塊對多光譜與高光譜數(shù)據(jù)進行大氣校正,校正后的影像數(shù)據(jù)不僅能夠更加真實的反應地物的反射率信息,而且圖像清晰度也得到了提高。(2)使用ASTER多光譜數(shù)據(jù)對研究區(qū)進行鐵染與碳酸鹽化蝕變信息提取。針對研究區(qū)植被覆蓋較高的特點,選擇植被覆蓋度+掩膜、混合像元分解兩種方法抑制植被影響,在此基礎上用比值法與主成分分析法分別進行蝕變信息提取。經(jīng)過與已知地質資料疊加分析及野外驗證,發(fā)現(xiàn)“基于混合像元分解+主成分分析”法不僅能充分抑制植被而突出礦化信息,而且提取結果精度優(yōu)于其它方法,在空間分布上與地層、斷層有著密切的關系。(3)應用Hyperion高光譜數(shù)據(jù)對高植被區(qū)碳酸鹽化開展了蝕變信息提取。針對高光譜數(shù)據(jù)特點,使用高斯徑向基核主成分分析方法對其進行降維處理,取得較好效果。在此基礎上利用PPI與N維可視化工具提取純凈端元,并與野外實測波譜數(shù)據(jù)進行匹配分析,最終利用光譜角技術進行礦物填圖。經(jīng)過分析表明高光譜識別的白云石與方解石信息與多光譜提取的碳酸鹽化蝕變信息匹配度較好,但高光譜提取的方解石與白云石信息更加的清晰。
[Abstract]:In the process of mineral resources exploration, people usually use multi-source remote sensing data to extract alteration information related to mineralization, in order to delineate or predict the favorable target area for mineralization.Whether the disturbance of vegetation to the extraction of mineralization information can be minimized in the vegetation coverage area will have a great influence on the accurate delineation or prediction of the favorable target areas for mineralization.The region chosen by this study is located in Maxi and Shi Bingzun Guizhou Province. The mineral resources in this area are relatively rich but the vegetation coverage is high. It is difficult to extract alteration information by remote sensing.In order to solve this problem, two methods of vegetation coverage mask and mixed pixel decomposition were selected to reduce the vegetation influence. Based on ASTER and Hyperion, the mineralization alteration information was extracted in this area.In order to select the most suitable method for extracting alteration information in the study area and provide a scientific reference for the extraction of alteration information from remote sensing in other similar regions, the results of extraction are compared and analyzed comprehensively in order to find out the most suitable method for extracting alteration information in the study area.The main work of this thesis is as follows: 1) preprocessing ASTER and Hyperion data by digital image processing method.The atmospheric correction of multispectral and hyperspectral data is carried out by using FLAASH module provided by ENVI software. The corrected image data can not only reflect the reflectivity information of ground objects more truthfully.The image clarity is also improved. (2) ASTER multispectral data is used to extract iron stain and carbonation alteration information from the study area.In view of the characteristics of high vegetation coverage in the study area, two methods of vegetation coverage masking and mixed pixel decomposition were selected to suppress the vegetation influence, and the ratio method and principal component analysis method were used to extract the alteration information respectively.After superposition analysis with known geological data and field verification, it is found that "principal component analysis based on mixed pixel decomposition" can not only fully suppress vegetation and protrude mineralization information, but also has better precision than other methods.The Hyperion hyperspectral data are used to extract the alteration information of carbonization in the hypervegetation area.According to the characteristics of hyperspectral data, Gao Si's radial basis kernel principal component analysis method is used to reduce the dimension, and good results are obtained.On this basis, the pure end elements were extracted by PPI and N-dimensional visualization tools, and matched with the field measured spectral data. Finally, the mineral mapping was carried out by spectral angle technique.The analysis shows that the hyperspectral information of dolomite and calcite is better than that of multi-spectral extraction of carbonation alteration information, but the information of hyperspectral extraction of calcite and dolomite is more clear.
【學位授予單位】:成都理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P627
【參考文獻】
相關期刊論文 前10條
1 趙芝玲;王萍;荊林海;孫彥峰;;用ASTER數(shù)據(jù)提取植被覆蓋區(qū)遙感鐵礦化蝕變信息[J];金屬礦山;2016年10期
2 韓海輝;王藝霖;任廣利;楊敏;楊軍錄;李健強;高婷;;基于ASTER數(shù)據(jù)的北山方山口地區(qū)蝕變礦物提取與找礦應用[J];遙感技術與應用;2016年02期
3 劉春國;譚文剛;;基于Landsat7 ETM+圖像提取蛤蟆溝林場淺覆蓋區(qū)蝕變遙感異常[J];河南理工大學學報(自然科學版);2016年01期
4 吳浩;徐元進;高冉;;基于光譜相關角和光譜信息散度的高光譜蝕變信息提取[J];地理與地理信息科學;2016年01期
5 張廷斌;楊玲莉;易桂花;別小娟;李紅梅;陳雪;王成;;西藏驅龍銅礦高光譜遙感蝕變分帶礦物提取[J];國土資源科技管理;2015年06期
6 王桂珍;張立福;孫雪劍;楊杭;姜海玲;童慶禧;;基于SREM融合數(shù)據(jù)的礦物蝕變信息提取[J];地球科學(中國地質大學學報);2015年08期
7 吳艷;何政偉;趙銀兵;高海洋;;中高植被區(qū)斑巖型銅礦床礦化蝕變提取[J];地理空間信息;2015年03期
8 汪新慶;史超;王群;;基于混合像元分解的高植被覆蓋區(qū)蝕變信息提取——以福建上杭紫金山礦田為例[J];地質找礦論叢;2014年01期
9 靳娟;楊日紅;李家存;;ASTER數(shù)據(jù)蝕變礦物信息提取技術研究及其應用綜述[J];國土資源科技管理;2013年04期
10 楊佳佳;姜琦剛;趙靜;徐言;孟翔沖;;基于改進的SVM技術和高光譜遙感的標準礦物定量計算[J];吉林大學學報(地球科學版);2012年03期
相關博士學位論文 前2條
1 許菡;遙感影像混合像元分解新方法及應用研究[D];首都師范大學;2013年
2 劉漢湖;巖礦波譜數(shù)據(jù)分析與信息提取方法研究[D];成都理工大學;2008年
相關碩士學位論文 前2條
1 曾森;川藏鐵路沿線高光譜數(shù)據(jù)處理與巖性識別研究[D];成都理工大學;2016年
2 馮聰;內蒙古白乃廟地區(qū)礦化蝕變信息提取及成礦預測[D];中國地質大學(北京);2006年
,本文編號:1723388
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1723388.html