基于蒙特卡羅方法的脈沖中子地層多元素測(cè)井研究
本文選題:地層元素測(cè)井 切入點(diǎn):LaBr3:Ce晶體 出處:《東華理工大學(xué)》2017年碩士論文
【摘要】:近年來(lái),隨著常規(guī)油氣的開采量逐年下降同時(shí)對(duì)油氣的需求不斷加大,人們開始重視非常規(guī)油氣儲(chǔ)層勘探和開采,一項(xiàng)新型的技術(shù)誕生——地層元素測(cè)井。地層元素測(cè)井是一種利用中子源和地層元素發(fā)生相互作用放出γ射線來(lái)確定元素含量,進(jìn)而評(píng)價(jià)地層的中子伽馬測(cè)井技術(shù)。地層元素測(cè)井作為一種全面評(píng)價(jià)儲(chǔ)層的新技術(shù),可以準(zhǔn)確得到地層礦物成分,在識(shí)別復(fù)雜巖性方面得到廣泛應(yīng)用,已經(jīng)成為非常規(guī)油氣儲(chǔ)層識(shí)別和沉積環(huán)境及頁(yè)巖氣儲(chǔ)層勘探領(lǐng)域的重要手段。經(jīng)過調(diào)研發(fā)現(xiàn),目前國(guó)外成熟掌握此項(xiàng)技術(shù)的測(cè)井公司主要有三家,分別是斯倫貝謝、哈里伯頓和貝克休斯公司,而我國(guó)的地層元素測(cè)井起步較晚,為了打破國(guó)外對(duì)我國(guó)的技術(shù)壟斷,我國(guó)于2012年成功研制出地層元素測(cè)井樣機(jī)。但是,國(guó)內(nèi)還沒有一套可以應(yīng)用到實(shí)際測(cè)井中的標(biāo)準(zhǔn)元素譜,缺少一套完整的俘獲能譜解析的方法和軟件。本文的重點(diǎn)就是研究純凈標(biāo)準(zhǔn)能譜的獲取和能譜解析算法。本文從整個(gè)測(cè)井原理上推導(dǎo)了測(cè)井的理論計(jì)算公式,借助蒙特卡羅程序MCNP搭建平臺(tái)測(cè)井模型,首先分析研究了不同類型探測(cè)器和測(cè)井儀參數(shù)對(duì)測(cè)量能譜的影響,目的在于獲取理想的元素標(biāo)準(zhǔn)譜。根據(jù)推導(dǎo)的公式,確定解譜過程中所需要求解的三個(gè)重要參數(shù),分別是元素相對(duì)產(chǎn)額、相對(duì)靈敏度因子和地層因子。采用最小二乘法,詳細(xì)介紹了三個(gè)參數(shù)的求解過程,即解譜算法。最后利用以上解譜方法,聯(lián)合已獲取的各元素標(biāo)準(zhǔn)譜和地層元素混合譜,求解地層元素質(zhì)量百分?jǐn)?shù),通過與實(shí)際元素含量比對(duì),驗(yàn)證解譜算法的準(zhǔn)確性。通過伽馬能譜響應(yīng)影響因素研究,選擇LaBr3:Ce晶體作為探測(cè)器,可以獲得更高的測(cè)量精度;優(yōu)化了測(cè)井儀各項(xiàng)結(jié)構(gòu)參數(shù),達(dá)到最佳的探測(cè)響應(yīng);通過能譜數(shù)據(jù)處理得到的元素含量與實(shí)際含量對(duì)比發(fā)現(xiàn),基本一致,證明了所采用的解譜算法的可行性。
[Abstract]:In recent years, with the decline of conventional oil and gas production and the increasing demand for oil and gas, people begin to pay attention to the exploration and exploitation of unconventional oil and gas reservoirs.Formation element logging is a kind of neutron gamma logging technology, which uses the interaction of neutron source and formation element to release 緯 ray to determine element content and then evaluate formation.As a new technique for comprehensive reservoir evaluation, formation element logging can accurately obtain formation mineral components and be widely used in identifying complex lithology.It has become an important means of unconventional oil and gas reservoir identification, sedimentary environment and shale gas reservoir exploration.Through the investigation, it is found that there are mainly three logging companies abroad, which are Schlumberger, Halliburton and Baker Hughes, while the formation element logging in our country started relatively late.In order to break the technology monopoly of foreign countries, China successfully developed the formation element logging prototype in 2012.However, there is no standard element spectrum which can be applied to actual logging in China, and a complete method and software for the analysis of capture spectrum is lacking.The emphasis of this paper is to study the acquisition and analytical algorithm of pure standard energy spectrum.In this paper, the theoretical calculation formula of logging is derived from the whole logging principle, and the platform logging model is built with the help of Monte Carlo program MCNP. Firstly, the influence of the parameters of different types of detectors and logging tools on the measurement spectrum is analyzed and studied.The aim is to obtain the ideal standard spectrum of elements.According to the derived formula, three important parameters which need to be solved in the process of resolving the spectrum are determined, namely, the relative yield of elements, the relative sensitivity factor and the stratigraphic factor.Using the least square method, the process of solving the three parameters is introduced in detail, that is, the despectral algorithm.Finally, using the above method, combining the standard spectrum of each element and the mixed spectrum of stratigraphic elements, the mass percent of formation elements is solved. The accuracy of the algorithm is verified by comparing with the actual element content.Through the study of the influencing factors of gamma spectrum response, the LaBr3:Ce crystal is selected as the detector to obtain higher measurement accuracy, and the structural parameters of the logging tool are optimized to achieve the best detection response.It is found that the element content obtained by energy spectrum data processing is basically consistent with the actual content, which proves the feasibility of the proposed despectral algorithm.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P618.13;P631.81
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉際時(shí);元素測(cè)井研究[J];核物理動(dòng)態(tài);1994年02期
2 柳建華;劉瑞林;吳興能;張曉明;;化學(xué)元素測(cè)井資料在地層界面處的響應(yīng)特征研究[J];石油天然氣學(xué)報(bào);2007年01期
3 嚴(yán)慧娟;岳愛忠;趙均;張建民;王樹聲;林巖棟;;地層元素測(cè)井儀器結(jié)構(gòu)參數(shù)的蒙特卡羅數(shù)值模擬[J];測(cè)井技術(shù);2012年03期
4 張林;;X熒光元素測(cè)井方法簡(jiǎn)介[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年S1期
5 楊興琴;王環(huán);;地層元素測(cè)井技術(shù):解決復(fù)雜儲(chǔ)層巖性識(shí)別問題[J];測(cè)井技術(shù);2011年03期
6 孫建孟;姜東;尹璐;;地層元素測(cè)井確定礦物含量的新方法[J];天然氣工業(yè);2014年02期
7 李舟波,王祝文;科學(xué)鉆探中的元素測(cè)井技術(shù)[J];地學(xué)前緣;1998年01期
8 張鋒;劉軍濤;冀秀文;袁超;;地層元素測(cè)井技術(shù)最新進(jìn)展及其應(yīng)用[J];同位素;2011年S1期
9 彭智;李國(guó)玉;;元素測(cè)井資料解釋及應(yīng)用[J];石油儀器;2014年01期
10 袁祖貴;地層元素測(cè)井(ECS)評(píng)價(jià)油水層[J];核電子學(xué)與探測(cè)技術(shù);2004年02期
相關(guān)會(huì)議論文 前1條
1 袁祖貴;成曉寧;孫娟;;地層元素測(cè)井(ECS)——一種全面評(píng)價(jià)儲(chǔ)層的測(cè)井新技術(shù)[A];第三屆北京核學(xué)會(huì)核應(yīng)用技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2004年
相關(guān)碩士學(xué)位論文 前2條
1 蘇秦;元素與沉積巖巖性、礦物含量的關(guān)系及在地層元素測(cè)井解釋中的應(yīng)用[D];西北大學(xué);2016年
2 周鵬飛;基于蒙特卡羅方法的脈沖中子地層多元素測(cè)井研究[D];東華理工大學(xué);2017年
,本文編號(hào):1721548
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1721548.html