MRS-TEM聯(lián)用儀拉莫爾頻率測量模塊的研制
發(fā)布時間:2018-03-28 17:33
本文選題:ARM 切入點:CPLD 出處:《吉林大學》2015年碩士論文
【摘要】:伴隨著科技水平技術的不斷提高,,水的重要性和用途越來越大,可是水資源在地球上的很多地區(qū)卻相當貧乏,直接導致了該地方各方面的落后。所以,為了解決上述的種種問題,探求一種探水方式是極其重要的。到現(xiàn)在為止,核磁共振(MRS)找水法是僅有的一種方式,它不需要進行挖掘即可探測出水的位置與容量。瞬變電磁法(TEM)則是一種間接方式對水資源進行探測,效果也較好,它的優(yōu)勢是探測范圍比MRS更為廣泛。聯(lián)用儀就是綜合了MRS的準確和TEM的范圍,以這兩者的互補技術研發(fā)出了MRS與TEM聯(lián)用儀,簡稱聯(lián)用儀。 本論文的研究內(nèi)容為核磁共振聯(lián)用儀的拉莫爾頻率測量模塊,根據(jù)核磁共振找水方法的原理,最基本的已知量就是要知道地磁場的頻率,而地球上每個位置的磁場都是不相同的,只有準確測量出地磁場的大小和地磁場作用下氫質(zhì)子的進動頻率。才能在核磁共振儀器工作過程中取得最大的信號強度和效果。因此,準確測量出拉莫爾頻率對于聯(lián)用儀來講是非常重要的一個開發(fā)模塊。它直接決定了整個儀器的量化結(jié)果。模塊的主要下位機控制采用ARM單片機進行控制和信號采集,采用CPLD進行數(shù)字信號的測量,上位機采用Labview軟件以子VI的形式集成于核磁共振聯(lián)用儀的上位機軟件中。 根據(jù)研究內(nèi)容,本文解決的問題有:核磁共振聯(lián)用儀拉莫爾頻率測量模塊的集成,核磁共振聯(lián)用儀總線下模塊的掛接,上位機Labview軟件的人機界面,拉莫爾頻率測量模塊主控電路的開發(fā),拉莫爾頻率測量模塊極化電路的開發(fā),拉莫爾頻率測量模塊放大電路的開發(fā),拉莫爾頻率測量模塊切換電路的開發(fā),拉莫爾頻率測量模塊信號處理測量電路的開發(fā),模塊的電容自動化配諧方法的研制,模塊的結(jié)構(gòu)研制等等。 本文主要是開發(fā)一個拉莫爾頻率測量系統(tǒng)模塊集成于整個聯(lián)用儀器當中,模塊工作原理采用質(zhì)子旋進的方式對地磁場的拉莫爾頻率進行精準測量,測量精度達到0.05Hz。
[Abstract]:With the development of science and technology, water is becoming more and more important and useful, but water resources are very poor in many areas of the earth, which directly leads to the backwardness in all aspects of the area. In order to solve these problems, it is extremely important to find a way to detect water. So far, MRS is the only way to find water. It can detect the position and capacity of effluent without digging. Transient electromagnetic method (temm) is an indirect way to detect water resources, and the effect is good. Its advantage is that the detection range is more extensive than that of MRS. The combined instrument combines the accuracy of MRS and the range of TEM. With the complementary technology of the two, the combined instrument of MRS and TEM is developed. According to the principle of nuclear magnetic resonance (NMR) looking for water, the most basic known quantity is to know the frequency of geomagnetic field. However, the magnetic field in every position of the earth is different. Only by accurately measuring the magnitude of the geomagnetic field and the precession frequency of the hydrogen proton under the action of the geomagnetic field, can the maximum signal intensity and effect be obtained during the operation of the nuclear magnetic resonance instrument. It is a very important development module to measure the Lammore frequency accurately. It directly determines the quantization result of the whole instrument. The main lower computer control of the module is controlled by ARM single chip microcomputer and the signal is collected. The digital signal is measured by CPLD, and the upper computer is integrated into the upper computer software of nuclear magnetic resonance (NMR) by Labview software in the form of sub-VI. According to the research content, the problems solved in this paper are: the integration of the frequency measurement module of the nuclear magnetic resonance instrument, the connection of the module under the nuclear magnetic resonance instrument bus, the man-machine interface of the upper computer Labview software, The development of the main control circuit of the frequency measurement module, the polarization circuit of the frequency measurement module, the amplification circuit of the frequency measurement module, the switch circuit of the frequency measurement module, The development of signal processing and measurement circuit of Rammore frequency measurement module, the development of the module's capacitive automatic harmonic matching method, the development of the module's structure and so on. In this paper, a module of Rammore frequency measurement system is developed and integrated into the whole instrument. The working principle of the module is to accurately measure the frequency of the geomagnetic field by proton precession, and the measuring precision is up to 0.05 Hz.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:P641.7;P631.2
【參考文獻】
相關期刊論文 前10條
1 王應吉;李偉;孫淑琴;姜艷秋;;基于MSP430的質(zhì)子旋進式磁力儀設計[J];吉林大學學報(信息科學版);2006年03期
2 習曉紅;段清明;林君;尚新磊;;核磁共振信號頻率測量系統(tǒng)的設計與實現(xiàn)[J];吉林大學學報(信息科學版);2008年05期
3 田寶鳳;段清明;;核磁共振信號工頻諧波的自適應濾除方法[J];吉林大學學報(信息科學版);2009年03期
4 金惕若;利用質(zhì)子信號模擬器校準質(zhì)子進動式磁強計[J];電測與儀表;2000年04期
5 張保祥,劉春華;瞬變電磁法在地下水勘查中的應用綜述[J];地球物理學進展;2004年03期
6 婁德波;宋國璽;李楠;丁建華;陰江寧;鄒偉;;磁法在我國礦產(chǎn)預測中的應用[J];地球物理學進展;2008年01期
7 褚童松;習友寶;;基于MAX260的程控濾波器設計[J];大眾科技;2011年08期
8 耿瑞倫;我國的水資源與西部地下水鉆探技術[J];地質(zhì)裝備;2001年02期
9 林君;現(xiàn)代地球物理儀器的開發(fā)與應用[J];地質(zhì)裝備;2004年02期
10 楊婕;許儀西;;G856質(zhì)子旋進磁力儀性能測試[J];防災科技學院學報;2008年01期
本文編號:1677335
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1677335.html
最近更新
教材專著