地下洞室圍巖體應(yīng)力波特征與數(shù)值模擬
本文選題:地下洞室 切入點(diǎn):圍巖 出處:《西南石油大學(xué)》2015年碩士論文
【摘要】:巖石動(dòng)力破壞是地下洞室開挖過程中遇到的難題,如何保證洞室圍巖穩(wěn)定取決于對(duì)巖石動(dòng)力學(xué)特性和應(yīng)力調(diào)整過程中圍巖破壞方式的深入研究,而對(duì)巖石破壞過程中的應(yīng)力波信號(hào)特征分析是重要的研究方法。本文采用傅里葉變換、短時(shí)傅里葉變換與小波變換等方法分析了應(yīng)力波的時(shí)頻特征和能量特性;運(yùn)用數(shù)值模擬方法,建立了爆破荷載對(duì)地下洞室的影響的模型,分別從質(zhì)點(diǎn)波速、振幅以及最大應(yīng)力三個(gè)方面分析了應(yīng)力波在巖體中的傳播特性和規(guī)律;結(jié)合地下洞室微震監(jiān)測(cè),分析了微震事件分布規(guī)律與硐室穩(wěn)定關(guān)系,獲得了監(jiān)測(cè)的多種應(yīng)力波的波譜及能量特性。主要研究結(jié)論如下: (1)地下空間開挖過程中監(jiān)測(cè)到巖體中應(yīng)力波信號(hào)包括直接人為活動(dòng)產(chǎn)生的,如人工敲擊、鑿巖、爆破等,也包括巖石破裂、斷層錯(cuò)動(dòng)等產(chǎn)生微震動(dòng),這些振動(dòng)均可以通過傅里葉變換、短時(shí)傅里葉變換、小波變換來進(jìn)行分析。 (2)通過對(duì)微震振動(dòng)和爆破振動(dòng)的頻率分析看出,微震信號(hào)一般只有一個(gè)主頻率,而爆破信號(hào)往往有多個(gè)主頻率,可能是由于開挖過程中微差爆破造成的;通過其能量分布來看,微震信號(hào)和爆破信號(hào)的主要能量基本集中在低頻帶,但爆破信號(hào)在高頻部分也聚集一定的能量,能量分布相對(duì)于微震信號(hào)較寬。 (3)通過地下洞室爆破施工的數(shù)值模擬來看,圍巖質(zhì)點(diǎn)振動(dòng)速度和振動(dòng)幅度均是墻腳最大,側(cè)墻次之,拱頂最小,水平方向的速度是垂直方向速度的幾倍,這是由于墻腳距爆源最大,受到的沖擊作用最為強(qiáng)烈,拱頂位置由于幾何形狀的影響,加上應(yīng)力波的反射疊加和衰減,使得應(yīng)力波對(duì)拱頂?shù)淖饔米钚?產(chǎn)生的位移也就最小。從頻譜圖可以看出,微差爆破產(chǎn)生的應(yīng)力波有多個(gè)主頻率,主頻范圍在80Hz~250Hz,其最大主頻率大約在130Hz左右,這與監(jiān)測(cè)到的爆破信號(hào)主頻率基本一致。 (4)通過對(duì)大崗山水電站微震監(jiān)測(cè)事件和微震應(yīng)力波分析看出,隨著分臺(tái)階施工從上至下的開展,洞室下部微震事件由于爆破開挖的影響逐步增多,且微震震級(jí)較大,在拱頂和兩側(cè)墻微震振動(dòng)相對(duì)較小;通過對(duì)微震監(jiān)測(cè)數(shù)據(jù)的綜合分析,分析了微震時(shí)空分布、震級(jí)與能量分布等動(dòng)力學(xué)問題,并總結(jié)了微震監(jiān)測(cè)下的地下洞室穩(wěn)定性評(píng)價(jià)方法。 通過對(duì)巖體動(dòng)力破壞過程中應(yīng)力波蘊(yùn)含的大量巖體狀態(tài)信息來反饋巖體動(dòng)力破壞過程,為地下洞室圍巖穩(wěn)定性判別、支護(hù)設(shè)計(jì)選擇以及設(shè)計(jì)施工提供了較強(qiáng)的理論和實(shí)踐基礎(chǔ)。
[Abstract]:Dynamic failure of rock is a difficult problem in the excavation of underground cavern. How to ensure the stability of surrounding rock depends on the in-depth study of rock dynamic characteristics and failure mode of surrounding rock during stress adjustment. In this paper, the time-frequency and energy characteristics of stress wave are analyzed by Fourier transform, short-time Fourier transform and wavelet transform. By using numerical simulation method, the model of the influence of blasting load on underground cavern is established. The propagation characteristics and law of stress wave in rock mass are analyzed from three aspects of particle wave velocity, amplitude and maximum stress. Combined with microseismic monitoring of underground caverns, the relationship between microseismic event distribution and chamber stability is analyzed, and the spectrum and energy characteristics of various stress waves are obtained. The main conclusions are as follows:. 1) during the excavation of underground space, the signals of stress waves in rock mass are detected, including those produced by direct human activities, such as artificial percussion, rock drilling, blasting, etc., as well as micro-vibration caused by rock rupture and fault dislocation, etc. These vibrations can be analyzed by Fourier transform, short-time Fourier transform and wavelet transform. 2) by analyzing the frequency of microseismic vibration and blasting vibration, it can be seen that the microseismic signal usually has only one main frequency, and the blasting signal usually has multiple main frequencies, which may be caused by millisecond blasting during excavation. The main energy of the microseismic signal and the blasting signal is concentrated in the low frequency band, but the blasting signal also accumulates some energy in the high frequency part, and the energy distribution is wider than that of the microseismic signal. According to the numerical simulation of blasting construction in underground cavern, the vibration velocity and amplitude of surrounding rock particle are the largest at the foot of the wall, followed by the side wall, and the vault is the smallest, and the velocity in the horizontal direction is several times of the velocity in the vertical direction. This is because the foot of the wall has the largest distance from the detonation source and is most strongly affected by the impact. The position of the vault is affected by the geometry, and the reflection, superposition and attenuation of the stress wave make the stress wave have the least effect on the vault. It can be seen from the spectrum diagram that the stress wave produced by millisecond blasting has several main frequencies, the main frequency range is in the range of 80Hz ~ 250Hz, and its maximum main frequency is about 130Hz, which is basically consistent with the main frequency of the monitored blasting signal. Through the analysis of microseismic monitoring events and microseismic stress waves of Dagangshan Hydropower Station, it is shown that with the development of step construction from top to bottom, the microseismic events in the lower part of the cavern increase gradually due to the influence of blasting excavation, and the magnitude of microearthquakes is larger. The microseismic vibration of the arch roof and the walls on both sides is relatively small, and the dynamic problems such as the spatial and temporal distribution, magnitude and energy distribution of the microearthquakes are analyzed through the comprehensive analysis of the monitoring data of microearthquakes, and the evaluation methods of the stability of underground caverns under the microseismic monitoring are summarized. According to the state information of rock mass contained in stress wave in the process of dynamic rock mass failure, the dynamic failure process of rock mass is feedback, and the stability of surrounding rock in underground cavern can be judged. Support design selection and design and construction provide a strong theoretical and practical basis.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊小林,王樹仁;巖石爆破損傷斷裂的細(xì)觀機(jī)理[J];爆炸與沖擊;2000年03期
2 樓溈濤;干燥和水飽和花崗巖的動(dòng)態(tài)斷裂特性[J];爆炸與沖擊;1994年03期
3 王家來,徐穎;應(yīng)變波對(duì)巖體的損傷作用和爆生裂紋傳播[J];爆炸與沖擊;1995年03期
4 曹樹剛;劉延保;李勇;張立強(qiáng);;不同圍壓下煤巖聲發(fā)射特征試驗(yàn)[J];重慶大學(xué)學(xué)報(bào);2009年11期
5 李彤華,唐春海,于亞倫;爆破振動(dòng)的頻譜特征及其工程應(yīng)用[J];工程爆破;2000年02期
6 周喜德;巖體中彈性波速度及其應(yīng)用研究[J];貴州水力發(fā)電;1999年02期
7 王維;陳晨;王馨靚;趙貴杰;紀(jì)曉宇;錢方;;水射流破碎油頁(yè)巖應(yīng)力波效應(yīng)的數(shù)值模擬[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2012年S3期
8 唐禮忠;潘長(zhǎng)良;楊承祥;郭然;;冬瓜山銅礦微震監(jiān)測(cè)系統(tǒng)及其應(yīng)用研究[J];金屬礦山;2006年10期
9 曹安業(yè);竇林名;秦玉紅;李志華;鞏思園;王玉剛;;高應(yīng)力區(qū)微震監(jiān)測(cè)信號(hào)特征分析[J];采礦與安全工程學(xué)報(bào);2007年02期
10 彭維紅;盧愛紅;;應(yīng)力波作用下巷道圍巖層裂失穩(wěn)的數(shù)值模擬[J];采礦與安全工程學(xué)報(bào);2008年02期
,本文編號(hào):1671601
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1671601.html