天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 地質(zhì)論文 >

隱伏斷層地震誘發(fā)滑坡易發(fā)性多尺度評價

發(fā)布時間:2018-03-04 00:30

  本文選題:地震滑坡 切入點:易發(fā)性評價 出處:《浙江大學》2017年碩士論文 論文類型:學位論文


【摘要】:地震滑坡常見于地震災害鏈中,不僅帶來巨大的生命財產(chǎn)損失,還嚴重影響了震后救援工作。地震滑坡物理機制復雜,影響因素繁多,基于數(shù)據(jù)挖掘和GIS的地震滑坡易發(fā)性評價有效規(guī)避了基于物理模型評價存在的物理參數(shù)和監(jiān)測數(shù)據(jù)獲取困難的問題,成為地震滑坡易發(fā)性評價的重要手段。本文以2004年日本新o_中越地震為研究對象,本次地震主震震級為6.8級,其后陸續(xù)發(fā)生了 4次震級大于6.0級的余震,誘發(fā)了數(shù)以千計的滑坡,此次地震為隱伏斷層地震。本文采用了三種數(shù)據(jù)挖掘方法,同時為了彌補隱伏斷層地震缺乏地表破裂帶這一重要影響因子的不足,新增了同震地表變形作為影響因子,分別針對大面積區(qū)域和震中區(qū)域兩個尺度開展了基于數(shù)據(jù)挖掘和GIS的地震滑坡易發(fā)性評價工作。主要的研究工作和研究成果如下:(1)針對大面積研究區(qū)域,采用了邏輯回歸、支持向量機和人工神經(jīng)網(wǎng)絡等三個數(shù)據(jù)挖掘模型開展了地震滑坡易發(fā)性評價,并對研究區(qū)域進行了合理的易發(fā)性等級分區(qū)。結果表明三種模型方法都取得了較好的結果,ROC曲線下面積都達到了 80%以上,進行易發(fā)性分區(qū)后隨著易發(fā)性等級提升,區(qū)域內(nèi)滑坡比例呈較為明顯的梯度提升。綜合比較確定人工神經(jīng)網(wǎng)絡效果最好。(2)針對震中區(qū)域,在原有影響因子的基礎上新增同震地表變形作為影響因子,采用模擬效果最好的的人工神經(jīng)網(wǎng)絡進一步開展地震滑坡易發(fā)性評價,獲得了震中區(qū)域的精細化地震滑坡易發(fā)性等級分區(qū)圖。研究結果顯示考慮同震地表變形對結果有一定提升,其貢獻大于常見的坡向和距道路的距離等影響因子。因此,尤其是針對隱伏斷層地震影響因子資料不足的情況下,同震地表變形具備較大的應用價值。(3)多尺度區(qū)域評價結果對比分析表明,相較于大面積研究區(qū)域地震滑坡易發(fā)性評價,震中區(qū)域研究在同一區(qū)域取得更為精細的地震滑坡易發(fā)性分區(qū)圖,但模擬結果中ROC曲線下面積普遍較低。大面積區(qū)域和震中區(qū)域地震滑坡易發(fā)性評價相結合,實現(xiàn)了多尺度地震滑坡易發(fā)性分區(qū),滿足地震滑坡災害的不同層面的防控治理的需要。
[Abstract]:Earthquake landslide is common in earthquake disaster chain, which not only brings huge loss of life and property, but also seriously affects post-earthquake rescue work. The evaluation of seismic landslide vulnerability based on data mining and GIS effectively avoids the problems of obtaining physical parameters and monitoring data based on physical model evaluation. It has become an important means to evaluate the vulnerability of earthquake landslides. In this paper, the earthquake of 2004 in Japan was studied. The magnitude of the earthquake was 6.8, and four aftershocks with magnitude greater than 6.0 occurred one after another. Thousands of landslides have been induced, and the earthquake is a concealed fault earthquake. In this paper, three methods of data mining are used to make up for the deficiency of the hidden fault earthquake lacking the important factor of surface rupture zone. The coearthquake surface deformation is added as the influence factor, The evaluation of seismic landslide vulnerability based on data mining and GIS is carried out on two scales of large area area and epicenter area respectively. The main research work and research results are as follows: 1) for large area study area, logical regression is adopted. Three data mining models, support vector machine (SVM) and artificial neural network (Ann), are used to evaluate the vulnerability of earthquake and landslide. The results show that the area under the ROC curve is more than 80%, and the area increases with the grade of susceptibility. Compared with each other, artificial neural network has the best effect. Aiming at the epicentral area, the coseismic surface deformation is added as the influence factor on the basis of the original influence factors. The artificial neural network, which is the best simulation method, is used to further evaluate the vulnerability of seismic landslides. The fine zoning map of landslide susceptibility in epicentral area is obtained. The results show that considering the coseismic surface deformation, its contribution is greater than that of common influencing factors, such as slope direction and distance from road, and so on. Especially in view of the lack of data on the influencing factors of concealed faulted earthquakes, the results of multi-scale regional evaluation of coearthquake ground deformation have great application value. The results show that compared with the large area study area, seismic landslide susceptibility evaluation is better than that of coearthquake ground deformation. The regional study of epicenter obtained a more precise zoning map of seismic landslide susceptibility in the same area, but the area under the ROC curve is generally lower in the simulation results, and the large area is combined with the seismic landslide susceptibility evaluation in the epicenter region. The multi-scale seismic landslide prone zone is realized, which meets the need of prevention and control of different levels of earthquake landslide disaster.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P642.22

【參考文獻】

相關期刊論文 前10條

1 ZHOU Hong-jian;WANG Xi;YUAN Yi;;Risk Assessment of Disaster Chain: Experience from Wenchuan Earthquake-induced Landslides in China[J];Journal of Mountain Science;2015年05期

2 許沖;;利用同震滑坡分析2014年魯?shù)榈卣鹫鹪葱再|(zhì)與破裂過程[J];工程地質(zhì)學報;2015年04期

3 柯福陽;李亞云;;基于BP神經(jīng)網(wǎng)絡的滑坡地質(zhì)災害預測方法[J];工程勘察;2014年08期

4 譚龍;陳冠;王思源;孟興民;;邏輯回歸與支持向量機模型在滑坡敏感性評價中的應用[J];工程地質(zhì)學報;2014年01期

5 譚龍;陳冠;曾潤強;熊木齊;孟興民;;人工神經(jīng)網(wǎng)絡在滑坡敏感性評價中的應用[J];蘭州大學學報(自然科學版);2014年01期

6 許沖;徐錫偉;;2008年汶川地震導致的斜坡物質(zhì)響應率及其空間分布規(guī)律分析[J];巖石力學與工程學報;2013年S2期

7 陳曉清;崔鵬;游勇;楊宗佶;孔應德;;4·20蘆山地震次生山地災害與減災對策[J];地學前緣;2013年03期

8 許沖;徐錫偉;吳熙彥;戴福初;姚鑫;姚琪;;2008年汶川地震滑坡詳細編目及其空間分布規(guī)律分析[J];工程地質(zhì)學報;2013年01期

9 許沖;徐錫偉;;基于不同核函數(shù)的2010年玉樹地震滑坡空間預測模型研究[J];地球物理學報;2012年09期

10 ZHAO Yu;KONAGAI Kazuo;FUJITA Fujitomo;;Multi-scale Decomposition of Co-seismic Deformation from High Resolution DEMs:a Case Study of the 2004 Mid-Niigata Earthquake[J];Acta Geologica Sinica(English Edition);2012年04期

相關博士學位論文 前1條

1 王志旺;基于GIS技術的區(qū)域滑坡分形特征分析與危險性評價[D];中國地質(zhì)大學;2010年

相關碩士學位論文 前3條

1 袁文旗;警用地理信息系統(tǒng)的研究與實現(xiàn)[D];北京交通大學;2010年

2 陶舒;汶川地震滑坡遙感信息提取及災害危險性評價研究[D];首都師范大學;2009年

3 高克昌;基于GIS的萬州區(qū)滑坡地質(zhì)災害危險性評價研究[D];重慶師范大學;2003年



本文編號:1563383

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1563383.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶b2b87***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com