吉林和龍官地鐵礦礦床地質(zhì)特征及礦化富集規(guī)律
本文選題:BIF 切入點(diǎn):礦床地質(zhì) 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:官地鐵礦床位于吉林省和龍市境內(nèi),其大地構(gòu)造位置屬于華北地臺北緣東段,膠遼吉活動帶以北的龍崗地塊西北邊緣。位于和龍?zhí)糯F成礦帶,是延邊重要的鐵礦帶。礦區(qū)地層出露簡單,主要是太古界三道溝組的中段和上,段(原百日坪組和甲山組),礦區(qū)內(nèi)構(gòu)造以斷裂和褶皺構(gòu)造為主,其中北西向構(gòu)造主要為褶皺和層間破碎帶,北東向構(gòu)造以蜂蜜溝斷裂規(guī)模最大,主要控制熱液活動和閃長巖脈侵入,對礦體破壞較大。礦區(qū)內(nèi)巖漿活動表現(xiàn)的巖石種類簡單,主要為閃長巖脈。官地鐵礦主要產(chǎn)在太古界三道溝組上段(原甲山組)下部層位,一套深變質(zhì)的基性-酸性火山-沉積建造中。受構(gòu)造作用影響斷續(xù)產(chǎn)出15個(gè)鐵礦體群,以Ⅰ、Ⅱ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅹ、Ⅶ號礦組礦體規(guī)模相對較大,構(gòu)成工業(yè)礦體。礦體主要呈層狀、似層狀、扁豆?fàn)。礦石類型比較簡單,為磁鐵石英巖,由硅質(zhì)和鐵質(zhì)條帶互層構(gòu)成,礦石構(gòu)造以條帶狀和浸染狀構(gòu)造為主。礦體的圍巖主要為斜長角閃巖和長英質(zhì)片麻巖,經(jīng)原巖恢復(fù)分別為拉斑玄武巖和酸性噴出巖,產(chǎn)出與島弧構(gòu)造背景中。其中對斜長角閃巖進(jìn)行了鋯石U-Pb年代學(xué)研究,結(jié)果可分為三組:第一組年齡為2724±22Ma,為捕獲鋯石的年齡,代表區(qū)域內(nèi)存在~2.7Ga的巖漿事件;第二組鋯石全部為巖漿鋯石,環(huán)帶清晰,年齡2556±17Ma,代表斜長角閃巖原巖形成的年齡;第三組鋯石可見清晰的核幔結(jié)構(gòu),圍繞核部巖漿鋯石形成色調(diào)較淺的變質(zhì)增生邊,為典型的變質(zhì)鋯石,207Pb/206Pb加權(quán)平均年齡為2452±23Ma,代表該時(shí)期內(nèi)發(fā)生變質(zhì)事件。對BIF的年代學(xué)研究往往采用對其上下盤及夾層圍巖進(jìn)行年齡測定的方法,間接得到成礦時(shí)代。因此官地鐵礦的時(shí)代應(yīng)為2556±17Ma。通過對礦石的地球化學(xué)研究,發(fā)現(xiàn)礦石形成于缺氧的海水環(huán)境中,很少有陸源碎屑物質(zhì)的加入。其成礦物質(zhì)來源中鐵質(zhì)主要來自與海底火山相關(guān)得海底高溫?zé)崴膰娏髯饔?Si質(zhì)同樣來源于高溫的熱水體系中。Fe質(zhì)主要以Fe2+的形式搬運(yùn),其沉淀機(jī)制在太古代的缺氧環(huán)境中可能與微生物的活動,密切相關(guān)。原始沉積的硅鐵條帶形成后,后期的變質(zhì)和變形作用,是成礦物質(zhì)發(fā)生活化和遷移,改造成了硅鐵條帶,Si質(zhì)和Fe質(zhì)重結(jié)晶形成石英和磁鐵礦顆粒,使礦體達(dá)到富集。通過研究,認(rèn)為官地鐵礦成礦年齡為~2.5Ga,形成于與洋殼俯沖有關(guān)的島弧環(huán)境中,~2.45Ga發(fā)生弧陸碰撞、弧弧碰撞使區(qū)域內(nèi)巖石普遍遭受變質(zhì)作用,使先前沉積形成的礦體遭受改造。通過與國內(nèi)典型的BIF鐵礦的對比,認(rèn)為官地鐵礦為與火山活動關(guān)系密切的Algoma型BIF鐵礦。通過礦化富集規(guī)律的研究,官地BIF鐵礦的形成與太古代的表殼巖密切相關(guān)。與古老的表殼巖同期形成并作為礦體的直接賦礦圍巖。古老的表殼巖是尋找BIF型鐵礦床的重要標(biāo)志和必備條件。后期的斷裂構(gòu)造使礦體發(fā)生錯(cuò)段,破壞了礦體的連續(xù)性,斷裂構(gòu)造還為熱液的運(yùn)移提供了通道,但熱液作用對官地鐵礦的改造作用并不明顯。褶皺構(gòu)造有利于礦層的加厚,在平面和剖面上,褶皺轉(zhuǎn)折端往往發(fā)生加厚富集。
[Abstract]:The deposit is located in the territory of the subway, Helong City, Jilin Province, and its tectonic position belongs to North China Taipei border east, Jiao Liao Ji belt to the northwest edge of Longgang block north. Located in the Helong Archaean iron metallogenic belt, Yanbian is an important iron ore belt. The stratum of mining area is simple, mainly Archean three ditch group the middle section and, (the original hundred days Ping group and kapsan group), within the mining area structure to fracture and fold structure, which is mainly NW folds and interlayer fracture zone, NE structure with honey ditch largest fault, the main control of hydrothermal activity and diorite vein invasion on the great damage. Magmatic activity within the mining area is the main rock types, diorite dikes. Iron ore is mainly produced in the Guandi Archean three channel formation (formerly Jiashan group) of lower strata, a base of deep metamorphic acidic volcano sedimentary formations by tectonism. Influence of intermittent output of 15 iron ore body group, with I, II, IV, V, VI, VII, VIII, x, VII ore group ore scale is relatively large, form industrial ore bodies. The ore body mainly is layered, stratoid, lenticular. The ore type is relatively simple, for magnetite quartzite, made of silica and iron with each layer, ore structure in banded and disseminated structures are the main ore body. The surrounding rock is mainly amphibolite and felsic gneiss, the protolith were tholeiite and acidic volcanic rocks, output and arc tectonic background. The amphibolite of zircon U-Pb chronology research results can be divided into three groups: the first group age was 2724 + 22Ma, to capture the zircon age, there are ~ 2.7Ga magmatic events represent region; second groups of zircon all magmatic zircon, zoning clear, age 2556 + 17Ma, on behalf of amphibolites formed third groups of age; The core mantle structure zircon is clearly visible, around the core of magmatic zircon formation of metamorphic zircons tone shallow edge, is typical of metamorphic zircons, 207Pb/206Pb weighted average age was 2452 + 23Ma, on behalf of the metamorphic event occurred period. Dating of the BIF method is used for the determination of the age on the footwall and laminated rock therefore, indirect metallogenic epoch. The age of the iron crown was 2556 + 17Ma. by geochemistry of ore, ore formation found in anoxic seawater environment, there is little terrigenous material. Adding its exhalation ore-forming material sources of iron mainly from submarine volcano related to submarine hot water, Si also comes from the hot water system in.Fe matter is mainly in the form of Fe2+ handling, its precipitation mechanism may in anoxic environment in the Archean closely with microbial activity. The original deposition of ferrosilicon bands formed after the late metamorphism and deformation, and the migration of ore-forming materials made into life, ferrosilicon bands, Si and Fe heavy crystallization of quartz and magnetite particles, the ore enrichment is obtained. Through the research, that the metallogenic age of iron ore for the officer to 2.5Ga formation related to subduction of oceanic crust and island arc environment, to the occurrence of 2.45Ga arc continent collision, arc arc collision in the region suffered from rock metamorphism, ore deposit formation make previously suffered transformation. By comparing with the domestic typical BIF of iron ore, iron ore as that officer and volcano activity type Algoma BIF iron ore closely. Through the study of mineralization enrichment regularity, formation of the official BIF iron ore is closely related with the supracrustal rocks of Archean supracrustal rocks. And the ancient period and formed as the wall rocks of the ore bodies. The old supracrustal rocks is looking for BIF type And the essential condition of an important symbol of deposits. The late faults caused the occurrence of fault section, fractured orebody, fracture structure also provides a channel for the migration of hydrothermal fluid, but hydrothermal alteration of Guandi iron ore is not obvious. Fold to add thick seam, on the plane and profile on the turn end of fold often thickened enrichment.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P618.31
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王巍巍;曹新志;劉利寶;;第二礦化富集帶研究的若干認(rèn)識[J];地質(zhì)科技情報(bào);2012年06期
2 金友漁;礦化富集中心的數(shù)學(xué)模型及在礦產(chǎn)資源總量預(yù)測中的應(yīng)用[J];地球科學(xué);1984年04期
3 金友漁;礦化富集中心地質(zhì)因素多元統(tǒng)計(jì)分析及應(yīng)用[J];地球科學(xué);1986年01期
4 申維;礦化富集動力學(xué)模型及其在礦產(chǎn)預(yù)測中的應(yīng)用[J];地學(xué)前緣;2000年01期
5 楊春福;;脈狀金礦床深部多個(gè)礦化富集段的找尋[J];黃金;2010年08期
6 申維;礦化富集的耗散結(jié)構(gòu)研究[J];礦物巖石地球化學(xué)通報(bào);2000年04期
7 李任章;介紹一個(gè)輝銻礦床中的柱狀礦化富集段[J];礦產(chǎn)與地質(zhì);1987年04期
8 王競成;麻陽銅礦礦化富集規(guī)律及找礦方向研究[J];有色金屬(礦山部分);1994年01期
9 鮑站力;;河南省西峽縣蒲塘金礦床礦化富集規(guī)律研究[J];中國科技信息;2014年10期
10 傅濤;蔣洪亮;;江蘇利國礦區(qū)礦化富集規(guī)律[J];礦業(yè)工程;2010年05期
相關(guān)會議論文 前4條
1 王小鳳;陳宣華;陳正樂;陳柏林;楊風(fēng);王克卓;張利容;袁嘉音;;阿爾金北緣地區(qū)銅金礦化富集規(guī)律[A];“九五”全國地質(zhì)科技重要成果論文集[C];2000年
2 趙金洲;;朱陽關(guān)-桑坪北部金礦脈特征及礦化富集規(guī)律初步研究[A];第四屆有色金屬地質(zhì)勘查工作交流暨學(xué)術(shù)討論會論文集[C];2003年
3 唐宇;叢源;李碧樂;高兵;吳強(qiáng);;膠東西北部北截-大河一帶造山型金礦礦化富集規(guī)律及潛力評價(jià)[A];第九屆全國采礦學(xué)術(shù)會議暨礦山技術(shù)設(shè)備展示會論文集[C];2012年
4 劉耀文;李廣岸;鄧紅玲;;吉家洼金礦床礦化富集規(guī)律及找礦方向[A];河南地球科學(xué)通報(bào)2010年卷(上冊)[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 侯登峰 唐亮 楊義廣;陜西首次發(fā)現(xiàn)特大型鈮(鉭)、銣礦[N];中國礦業(yè)報(bào);2014年
相關(guān)碩士學(xué)位論文 前10條
1 孫麗偉;膠東乳山蓬家夼金礦床地質(zhì)特征及礦化富集規(guī)律研究[D];吉林大學(xué);2015年
2 包小強(qiáng);張家坪子金礦床成礦機(jī)制及礦化富集特征[D];西北師范大學(xué);2016年
3 史春清;西藏安多南措金多金屬礦床地質(zhì)特征及礦化富集規(guī)律研究[D];吉林大學(xué);2017年
4 王飛;青海玉樹撒納龍哇銅礦床地質(zhì)特征及礦化富集規(guī)律[D];吉林大學(xué);2017年
5 吳瓊;吉林和龍官地鐵礦礦床地質(zhì)特征及礦化富集規(guī)律[D];吉林大學(xué);2017年
6 王鐸融;山東萊西山后金礦床地質(zhì)特征及礦化富集規(guī)律[D];吉林大學(xué);2015年
7 劉昊天;青海格爾木卡爾卻卡銅礦床地質(zhì)特征及礦化富集規(guī)律研究[D];吉林大學(xué);2015年
8 王鍵;吉林省西岔金銀礦床礦化富集規(guī)律及成因研究[D];吉林大學(xué);2013年
9 侯鶴楠;延邊地區(qū)六道崴子鐵銅礦床成因與礦化富集規(guī)律研究[D];吉林大學(xué);2014年
10 潘忠翠;吉林汪清赤衛(wèi)溝金礦床地質(zhì)特征及礦化富集規(guī)律研究[D];吉林大學(xué);2014年
,本文編號:1556685
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1556685.html