泥頁(yè)巖吸附天然氣量主控因素及定量表征研究
本文關(guān)鍵詞: 頁(yè)巖氣 吸附 主控因素 吸附實(shí)驗(yàn) 吸附模型 出處:《東北石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著世界油氣能源供給的日趨緊張和常規(guī)油氣勘探開發(fā)形勢(shì)的日趨嚴(yán)峻,非常規(guī)油氣資源,包括頁(yè)巖油氣、煤層氣、致密砂巖油氣等已引起人們的高度重視。北美勘探實(shí)踐表明非常規(guī)油氣中,目前發(fā)展勢(shì)頭最快、潛力最大的當(dāng)屬頁(yè)巖氣。頁(yè)巖氣的賦存方式分為游離氣、吸附氣和溶解氣。對(duì)于頁(yè)巖氣中吸附氣的比例構(gòu)成,前人研究成果表明,不同頁(yè)巖氣產(chǎn)層有很大不同,但普遍占有較高比例,一般介于40%~85%之間。此外,吸附態(tài)的存在還將提高頁(yè)巖氣的保存能力;谏鲜稣J(rèn)識(shí),吸附態(tài)的賦存方式被認(rèn)為是頁(yè)巖氣能夠被成功勘探開發(fā)的重要因素。為此,有必要對(duì)影響泥頁(yè)巖吸附氣量的主控因素進(jìn)行研究。以往對(duì)于吸附氣量主控因素的研究往往是多因素的復(fù)合,如有機(jī)質(zhì)豐度與頁(yè)巖吸附能力的關(guān)系可能同時(shí)包含了有機(jī)質(zhì)成熟度、溫度、濕度等其它因素的影響,毫無(wú)疑問(wèn)對(duì)單一因素的逐一揭示更具說(shuō)服力,為此本次設(shè)計(jì)開展了系列平行實(shí)驗(yàn),以求最大限度地揭示各因素的影響力。通過(guò)系列平行實(shí)驗(yàn)和數(shù)值模擬揭示了有機(jī)碳含量、有機(jī)質(zhì)成熟度、天然氣組成、溫壓和濕度等對(duì)泥頁(yè)巖吸附能力的影響,結(jié)果表明:(1)微小孔隙(3nm)是泥頁(yè)巖比表面積的主要貢獻(xiàn)者,其貢獻(xiàn)比例占80%左右,有機(jī)質(zhì)熱演化過(guò)程中會(huì)產(chǎn)生大量的微孔(2nm),比表面積大量增加,吸附氣量顯著增大;(2)泥頁(yè)巖對(duì)CO2、N2吸附能力高于CH4,暗示在進(jìn)行頁(yè)巖氣開采時(shí)可注入CO2和N2提高CH4采收率;(3)蘭格繆爾模型的擬合程度較好說(shuō)明泥頁(yè)巖對(duì)天然氣的吸附為單分子層吸附。吸附勢(shì)模型的地質(zhì)外推說(shuō)明了地質(zhì)條件下溫壓共同作用下泥頁(yè)巖吸附能力隨埋深增加呈先增大后減小的趨勢(shì),而孔隙度一定情況下泥頁(yè)巖儲(chǔ)存游離氣能力隨深度增加則呈逐漸增大的趨勢(shì),泥頁(yè)巖吸附能力與儲(chǔ)存游離氣能力變化趨勢(shì)的不一致會(huì)造成一定地質(zhì)條件下吸附氣量與游離氣的轉(zhuǎn)化,有利于頁(yè)巖氣的保存;(4)泥頁(yè)巖有機(jī)質(zhì)熱演化過(guò)程中親水NSO官能團(tuán)會(huì)逐漸降解,潤(rùn)濕性隨之變小,吸附氣量隨之增大,成巖作用是溫度、壓力和水介質(zhì)條件共同作用的結(jié)果,單純溫度的升高不會(huì)造成粘土礦物的轉(zhuǎn)化;(5)泥頁(yè)巖有機(jī)質(zhì)的成熟度、天然氣組分和地質(zhì)環(huán)境(包括溫度、壓力和濕度)均會(huì)影響泥頁(yè)巖的吸附能力,其中濕度影響較小,其影響往往會(huì)被有機(jī)質(zhì)豐度等因素的影響掩蓋。
[Abstract]:With the increasing shortage of oil and gas energy supply in the world and the increasingly severe situation of conventional oil and gas exploration and development, unconventional oil and gas resources, including shale oil and gas, coal bed methane, The exploration practice in North America shows that among the unconventional oil and gas, shale gas has the fastest development momentum and the most potential is shale gas. The occurrence of shale gas is divided into free gas. For the proportion of adsorbed gas in shale gas, the former research results show that different shale gas production layers are very different, but generally occupy a high proportion, generally between 40% and 85%. The existence of adsorbed state will also improve the ability to preserve shale gas. Based on the above understanding, the mode of occurrence of adsorption state is considered to be an important factor for the successful exploration and development of shale gas. It is necessary to study the main factors that influence the amount of gas adsorbed by shale. For example, the relationship between organic matter abundance and shale adsorption capacity may include the influence of organic matter maturity, temperature, humidity and other factors, so it is undoubtedly more convincing to reveal a single factor one by one. Therefore, a series of parallel experiments were carried out to maximize the influence of various factors. The organic carbon content, maturity of organic matter and composition of natural gas were revealed through a series of parallel experiments and numerical simulations. The effects of temperature, pressure and humidity on the adsorption capacity of shale show that: 1) small pore size 3nm) is the main contributor of shale specific surface area, and its contribution ratio is about 80%. During the thermal evolution of organic matter, a large number of micropores can be produced, and the specific surface area increases greatly. Adsorption capacity of shale to CO _ 2N _ 2 is higher than that of Ch _ 4, suggesting that CO2 and N _ 2 can be injected into shale gas to increase CH4 recovery. The fitting degree of Langmuir model shows that shale adsorbs natural gas better. The geo-extrapolation of the adsorption potential model shows that the adsorption capacity of shale increases first and then decreases with the increase of buried depth under the combined action of temperature and pressure. Under the condition of constant porosity, the storage capacity of free gas of shale increases with the depth of shale, and increases gradually with the increase of porosity. The inconsistency between shale adsorption capacity and storage free gas capacity will result in the transformation of adsorption gas and free gas under certain geological conditions. During the thermal evolution of shale organic matter, the hydrophilic NSO functional group will gradually degrade, the wettability will become smaller, and the amount of adsorbed gas will increase. The diagenesis is the result of the combined action of temperature, pressure and water medium condition. The increase of temperature will not result in the maturation of organic matter in shale. The composition of natural gas and geological environment (including temperature, pressure and humidity) will affect the adsorption ability of shale. Its influence will often be masked by factors such as the abundance of organic matter.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P618.13
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝慶賓;李娜;劉昊天;何文斌;王志芳;;四川盆地東部建南地區(qū)三疊系須家河組低孔低滲儲(chǔ)集層特征及形成機(jī)理[J];古地理學(xué)報(bào);2014年01期
2 樊陽(yáng);查明;姜林;張少鵬;張洪;;致密砂巖氣充注機(jī)制及成藏富集規(guī)律[J];斷塊油氣田;2014年01期
3 王成云;匡立春;高崗;崔瑋;孔玉華;向?qū)毩?柳廣弟;;吉木薩爾凹陷蘆草溝組泥質(zhì)巖類生烴潛力差異性分析[J];沉積學(xué)報(bào);2014年02期
4 宋濤;李建忠;姜曉宇;呂維寧;李欣;鐘雪梅;;冀中坳陷束鹿凹陷致密油成藏特征探討[J];復(fù)雜油氣藏;2014年01期
5 周尚文;薛華慶;郭偉;;川中侏羅系致密油儲(chǔ)層可動(dòng)流體實(shí)驗(yàn)[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
6 林天懿;柯柏林;林海亮;王玨;劉清俊;;北京地區(qū)頁(yè)巖氣資源前景分析[J];城市地質(zhì);2014年S1期
7 李華陽(yáng);李潮流;周燦燦;胡法龍;李霞;鄒友龍;;致密砂巖儲(chǔ)層測(cè)井?dāng)?shù)字巖石物理研究需求、進(jìn)展與挑戰(zhàn)[J];測(cè)井技術(shù);2014年02期
8 蔣裕強(qiáng);陳林;蔣嬋;覃明友;文秀;甘輝;王猛;胡朝陽(yáng);;致密儲(chǔ)層孔隙結(jié)構(gòu)表征技術(shù)及發(fā)展趨勢(shì)[J];地質(zhì)科技情報(bào);2014年03期
9 王國(guó)亭;李易隆;何東博;蔣平;程立華;;“改造型”致密砂巖氣藏特征:以吐哈盆地巴喀氣田下侏羅統(tǒng)八道灣組為例[J];地質(zhì)科技情報(bào);2014年03期
10 劉康;郝天珧;;位場(chǎng)方法在非常規(guī)油氣勘探中的應(yīng)用[J];地球物理學(xué)進(jìn)展;2014年02期
相關(guān)會(huì)議論文 前3條
1 姜文亞;江艷平;孫瑜;蒲秀剛;韓文中;李勇;;滄東凹陷致密油形成條件、成藏模式及勘探潛力[A];中國(guó)地質(zhì)學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要匯編——S13石油天然氣、非常規(guī)能源勘探開發(fā)理論與技術(shù)分會(huì)場(chǎng)[C];2013年
2 琚宜文;譚鋒奇;孫盈;吳建光;王國(guó)昌;李小詩(shī);鮑園;顏志豐;于立業(yè);衛(wèi)明明;李清光;Neupane Bhupati;;盆地滑脫構(gòu)造及其頁(yè)巖氣賦存研究進(jìn)展[A];2014年中國(guó)地球科學(xué)聯(lián)合學(xué)術(shù)年會(huì)——專題57:盆地動(dòng)力學(xué)與非常規(guī)能源論文集[C];2014年
3 李進(jìn)步;盧雙舫;陳國(guó)輝;田善思;王新;;大民屯凹陷E_2S_4~2段頁(yè)巖油資源評(píng)價(jià)關(guān)鍵參數(shù)S_1的校正[A];2014年中國(guó)地球科學(xué)聯(lián)合學(xué)術(shù)年會(huì)——專題57:盆地動(dòng)力學(xué)與非常規(guī)能源論文集[C];2014年
相關(guān)博士學(xué)位論文 前3條
1 曹青;鄂爾多斯盆地東部上古生界致密儲(chǔ)層成巖作用特征及其與天然氣成藏耦合關(guān)系[D];西北大學(xué);2013年
2 白玉彬;鄂爾多斯盆地吳堡地區(qū)長(zhǎng)7致密儲(chǔ)層成巖演化與成藏過(guò)程耦合機(jī)理[D];西北大學(xué);2013年
3 吳靖;東營(yíng)凹陷古近系沙四上亞段細(xì)粒巖沉積特征與層序地層研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
相關(guān)碩士學(xué)位論文 前10條
1 胡延旭;鄂爾多斯盆地西南部慶陽(yáng)地區(qū)長(zhǎng)8油層組儲(chǔ)層描述與評(píng)價(jià)[D];西北大學(xué);2014年
2 惠威;鄂爾多斯盆地蘇東南地區(qū)盒8儲(chǔ)層微觀孔隙結(jié)構(gòu)研究[D];西北大學(xué);2014年
3 閻媛子;鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7致密儲(chǔ)層測(cè)井沉積微相研究[D];西北大學(xué);2014年
4 張文昭;泌陽(yáng)凹陷古近系核桃園組三段頁(yè)巖油儲(chǔ)層特征及評(píng)價(jià)要素[D];中國(guó)地質(zhì)大學(xué)(北京);2014年
5 黃躍;含水致密砂巖氣藏氣水層評(píng)價(jià)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2014年
6 齊恒玄;蘇里格氣田南區(qū)盒8-山1儲(chǔ)層微觀孔隙結(jié)構(gòu)特征及滲流特征[D];西北大學(xué);2014年
7 張一果;鄂爾多斯盆地蘇里格氣田東區(qū)致密砂巖儲(chǔ)層微觀地質(zhì)特征研究[D];西北大學(xué);2014年
8 劉娜娜;齊家—古龍凹陷高臺(tái)子油層儲(chǔ)層成巖作用及其對(duì)儲(chǔ)層質(zhì)量的影響[D];吉林大學(xué);2014年
9 秦連杰;巢湖地區(qū)姚家山剖面龍?zhí)督M頁(yè)巖氣富集關(guān)鍵地質(zhì)因素研究[D];中國(guó)礦業(yè)大學(xué);2014年
10 王猛;霧中山~白馬廟地區(qū)須家河組須三段儲(chǔ)層特征及有利區(qū)預(yù)測(cè)[D];西南石油大學(xué);2014年
,本文編號(hào):1548425
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1548425.html