基于統(tǒng)一強(qiáng)度理論有限填土土壓力計(jì)算及擋墻優(yōu)化設(shè)計(jì)
本文關(guān)鍵詞: 重力式擋土墻 主動(dòng)土壓力 統(tǒng)一強(qiáng)度理論 有限填土 遺傳算法 優(yōu)化設(shè)計(jì) 出處:《湖南大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著城市的不斷發(fā)展,土地資源愈發(fā)緊張,經(jīng)常發(fā)生擬建建筑基坑擋墻與既有建筑地下室外墻相隔很近的情況。對(duì)于山區(qū)擋土墻,常因靠近巖石邊坡,從而形成有限填土空間。若運(yùn)用庫(kù)倫和朗金理論來(lái)計(jì)算土壓力,則需要墻后填土有足夠的寬度,以使滑裂面充分發(fā)展。因此,有限填土情況下的擋土墻土壓力計(jì)算和擋土墻截面優(yōu)化設(shè)計(jì)均亟待解決,且具有廣闊的前景。本文對(duì)擋土墻后有限填土土壓力以及擋土墻截面優(yōu)化設(shè)計(jì)進(jìn)行了較為深入的探討,主要內(nèi)容如下:首先,假定擋土墻后填土滑動(dòng)面為通過(guò)墻踵的多楔體平面,基于極限平衡理論,推導(dǎo)得到了墻后填土區(qū)狹窄,墻面傾斜、粗糙,填土面向上傾斜,并考慮地面超載和地震影響的無(wú)黏性土主動(dòng)土壓力解。隨著墻后填土寬度的改變,破壞模式實(shí)現(xiàn)從單楔體到雙楔體甚至三楔體的轉(zhuǎn)換,使得計(jì)算更加靈活。計(jì)算結(jié)果表明:隨著填土寬度的減小,土壓力隨之減少,且恒小于庫(kù)倫值。而當(dāng)墻面傾角較大時(shí),該方法與庫(kù)倫法差別較小。這是由于隨著墻面傾角的增加,填土頂面的寬度也隨之增加,使得其破壞模式傾向于與庫(kù)倫法相近的情況。然后,假定擋土墻后填土滑動(dòng)面為通過(guò)墻踵的平面雙滑塊模式,基于MorhCoulomb強(qiáng)度理論和極限分析原理,推導(dǎo)出適用于無(wú)黏性土的主動(dòng)土壓力解。結(jié)果表明:本方法得到的土壓力呈非線(xiàn)性分布,且土壓力強(qiáng)度隨深度增大而增大,在靠近墻底處其增幅逐漸減小。其次,假定擋土墻后填土滑動(dòng)面為通過(guò)墻踵的對(duì)數(shù)螺旋面和平面組合模式,基于統(tǒng)一強(qiáng)度理論和極限分析原理,推導(dǎo)出適用于黏性土的主動(dòng)土壓力解。當(dāng)材料切應(yīng)力系數(shù)B=2,統(tǒng)一強(qiáng)度理論回歸為Morh-Coulomb強(qiáng)度理論。結(jié)果表明:該方法所得土壓力系數(shù)大于本文以極限平衡理論為基礎(chǔ)提出的方法所得的解。這是由于基于極限分析方法所得解為土壓力的上限解,且土壓力合力作用點(diǎn)一直在變化,不總在距離墻踵1/3墻高處。最后,以擋土墻截面面積為目標(biāo)函數(shù),以截面幾何參數(shù)為設(shè)計(jì)標(biāo)量,將抗滑抗傾覆穩(wěn)定性、基底應(yīng)力和結(jié)構(gòu)構(gòu)造要求作為約束條件,建立了有限填土重力式擋土墻優(yōu)化模型,提出了基于遺傳算法有限填土重力式擋土墻智能優(yōu)化計(jì)算方法,并基于MATLAB編制了優(yōu)化計(jì)算程序。將本方法應(yīng)用于貴州某電廠(chǎng)擋墻設(shè)計(jì),分析發(fā)現(xiàn):在滿(mǎn)足抗滑和抗傾覆的條件下,優(yōu)化后節(jié)約面積38%,符合經(jīng)濟(jì)效益。
[Abstract]:With the continuous development of the city, the land resources become more and more tight. It often happens that the retaining wall of foundation pit of the proposed building is very close to the exterior wall of the basement of the existing building. For the retaining wall of the mountain area, it is often due to being close to the rock slope. If Coulomb and Rankine theory are used to calculate the earth pressure, it is necessary to have enough width of the backfill to make the slip surface develop fully. The calculation of the earth pressure of the retaining wall and the optimum design of the section of the retaining wall under the condition of limited fill are urgent to be solved. In this paper, the finite fill pressure behind the retaining wall and the optimization design of the retaining wall section are discussed in depth. The main contents are as follows: first. Assuming that the sliding surface of the backfill of retaining wall is a multi-wedge plane passing through the heel of the wall, based on the limit equilibrium theory, the narrow backfill area, the slope of the wall surface, the roughness of the backfill surface and the upward inclination of the fill are derived. The active earth pressure solution of non-clay soil affected by ground overload and earthquake is taken into account. With the change of backfill width, the failure mode can be transformed from single wedge to double wedge or even three-wedge. The calculation results show that the earth pressure decreases with the decrease of the fill width and is always less than the Coulomb value. The difference between the method and the Coulomb method is small. This is because the width of the top surface increases with the increase of the inclination of the wall, which makes the failure mode tend to be similar to that of the Coulomb method. Then. It is assumed that the sliding surface of the backfill of retaining wall is a plane double-slide model passing through the heel of the wall, based on the MorhCoulomb strength theory and the limit analysis principle. The results show that the soil pressure obtained by this method is nonlinear, and the soil pressure intensity increases with the increase of depth. The increment decreases gradually near the bottom of the wall. Secondly, it is assumed that the sliding surface behind the retaining wall is a logarithmic spiral plane and a plane combination model passing through the heel of the wall, based on the unified strength theory and the limit analysis principle. The active earth pressure solution suitable for clay is derived. The unified strength theory is regressed to the Morh-Coulomb strength theory. The results show that:. The soil pressure coefficient obtained by this method is larger than that obtained by the method based on the limit equilibrium theory, which is due to the fact that the solution based on the limit analysis method is the upper limit solution of the earth pressure. And the earth pressure acting point has been changing, not always at the height of 1/3 wall from the heel of the wall. Finally, taking the cross-section area of retaining wall as the objective function and the geometric parameters of the section as the design scalar, the stability of anti-slide and anti-capsizing will be achieved. The optimization model of gravity retaining wall with finite fill is established and the intelligent optimization method of gravity retaining wall with limited fill based on genetic algorithm is proposed. This method is applied to the design of retaining wall of a power plant in Guizhou province. It is found that under the conditions of anti-skid and anti-overturning, the optimized area is saved by 38%. Accord with economic benefit.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TU476.4;TU432
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉亮;李光范;杜娟;吳小鋒;;降雨和蒸發(fā)對(duì)非飽和土土壓力的影響[J];應(yīng)用力學(xué)學(xué)報(bào);2014年03期
2 應(yīng)宏偉;朱偉;黃東;謝新宇;李冰河;;狹窄黏性填土剛性擋墻主動(dòng)土壓力研究[J];巖土工程學(xué)報(bào);2012年S1期
3 應(yīng)宏偉;黃東;謝新宇;;考慮鄰近地下室外墻側(cè)壓力影響的平動(dòng)模式擋土墻主動(dòng)土壓力研究[J];巖石力學(xué)與工程學(xué)報(bào);2011年S1期
4 張健;胡瑞林;劉海斌;王珊珊;;基于統(tǒng)一強(qiáng)度理論朗肯土壓力的計(jì)算研究[J];巖石力學(xué)與工程學(xué)報(bào);2010年S1期
5 馬平;秦四清;錢(qián)海濤;;有限土體主動(dòng)土壓力計(jì)算[J];巖石力學(xué)與工程學(xué)報(bào);2008年S1期
6 黃亞娟;趙均海;田文秀;;基于雙剪統(tǒng)一強(qiáng)度理論的剛性結(jié)構(gòu)物豎直土壓力計(jì)算[J];建筑科學(xué)與工程學(xué)報(bào);2008年01期
7 李峰;郭院成;;基坑工程有限土體主動(dòng)土壓力計(jì)算分析研究[J];建筑科學(xué);2008年01期
8 陳棟梁;黨進(jìn)謙;;重力式擋土墻的截面優(yōu)化設(shè)計(jì)研究[J];巖土力學(xué);2007年09期
9 高江平;劉元烈;俞茂宏;;統(tǒng)一強(qiáng)度理論在擋土墻土壓力計(jì)算中的應(yīng)用[J];西安交通大學(xué)學(xué)報(bào);2006年03期
10 高江平;俞茂宏;;雙剪統(tǒng)一強(qiáng)度理論在空間主動(dòng)土壓力計(jì)算中的應(yīng)用[J];西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期
相關(guān)會(huì)議論文 前1條
1 李小春;許東俊;劉世煜;安民;;真三軸應(yīng)力狀態(tài)下拉西瓦花崗巖的強(qiáng)度、變形及破裂特性試驗(yàn)研究[A];中國(guó)巖石力學(xué)與工程學(xué)會(huì)第三次大會(huì)論文集[C];1994年
,本文編號(hào):1464259
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1464259.html