海潮引起的濱海地區(qū)地下水位波動的研究
本文關(guān)鍵詞:海潮引起的濱海地區(qū)地下水位波動的研究 出處:《中國地質(zhì)大學(北京)》2016年碩士論文 論文類型:學位論文
更多相關(guān)文章: 濱海含水層 潮汐效應(yīng) 周期 滯后時間 潮汐效率 含水層參數(shù)
【摘要】:濱海地區(qū)是人類生產(chǎn)生活密集的地區(qū),海洋與地下水之間的補排關(guān)系直接影響著濱海地區(qū)的地下水資源量與以及地下水的類型,濱海地區(qū)的地下水動態(tài)資料直接反映了海洋與地下水之間的相互作用。研究區(qū)位于廣西省北海市海城區(qū)北海岸,該區(qū)地下水埋藏類型主要是潛水和三層承壓水,該濱海松散孔隙介質(zhì)多含水層越流系統(tǒng)通過天窗、弱透水層發(fā)生密切的水力聯(lián)系。該地區(qū)地下水動態(tài)主要海潮的影響。本文利用6個觀測孔和海潮6個月的野外觀測資料研究了海潮引起的濱海地區(qū)地下水波動特征,主要包括相似性、周期性、滯后性、衰減性,另外本文擬合預(yù)測了水位波動曲線以及求取了承壓含水層儲水系數(shù)與導(dǎo)水系數(shù)的比值。研究結(jié)果顯示地下水位波動與海潮波動具有很強的相似性;利用譜分析法得到海潮波動與地下水波動具有三個基本相同的周期,近似值分別是341 h(即14.2d)、24.6 h、12.3 h;通過海潮與觀測孔水位的互相關(guān)系數(shù)圖得到六個觀測孔滯后海潮的時間,觀測孔SK1-1、SK1-2、SK1-3、SK1-4、SK2、SK3滯后時間分別為2.75 h、2.5 h、2.5 h、4 h、5.5 h、7 h,滯后時間與距海岸距離大體呈線性關(guān)系,近似表達式為xt_L=0076.0(L_t/h滯后時間,x/m距海岸距離);6個觀測孔的潮汐效率分別為0.0926、0.1268、0.1596、0.0509、0.08、0.05,潮汐效率隨距離大體上呈負指數(shù)函數(shù)衰減,近似表達式為TE-e~(-0.004x)=(TE為潮汐效率)。用線性方程擬合預(yù)測趨勢變化,用傅立葉級數(shù)擬合排除趨勢項之后的數(shù)據(jù),二者加和即為數(shù)學模型,結(jié)果表明該數(shù)學模型能較好地擬合預(yù)測波動曲線;本文提出了三種求解濱海含水層儲水系數(shù)與導(dǎo)水系數(shù)比值的方法,即一個觀測孔、兩個觀測孔、多個觀測孔時的求解方法,統(tǒng)稱為潮汐法。并對6個觀測孔進行了實例應(yīng)用,求得北海承壓含水層儲水系數(shù)與導(dǎo)水系數(shù)比值大約在0.39×10~(-6)~5.25×10~(-6)d/m~2之間。
[Abstract]:Coastal area is a region where human beings are producing and living intensively. The relationship between ocean and groundwater directly affects the quantity of groundwater resources and the types of groundwater in coastal areas. The groundwater dynamic data of coastal area directly reflect the interaction between ocean and groundwater. The study area is located on the north coast of Beihai City, Guangxi Province. The groundwater burial types in this area are mainly phreatic water and three-layer confined water. The seashore loose porous media multi-aquifer overflowing system passes through the skylight. There is a close hydraulic relation in weak permeable layer. The effect of main sea tide on groundwater dynamics in this area is studied. The fluctuation of groundwater in coastal area caused by sea tide is studied by using the field observation data of 6 observation holes and 6 months of ocean tide. Sign. Mainly include similarity, periodicity, lag, attenuation. In addition, the curve of water level fluctuation and the ratio of water storage coefficient to water conductivity coefficient of confined aquifer are obtained by fitting and forecasting. The results show that the fluctuation of groundwater level is very similar to the fluctuation of sea tide. The results of spectral analysis show that there are three similar periods for tidal wave and groundwater fluctuation, and the approximate values are 341h (i.e. 14.2dU 24.6 h) and 12.3 h (P < 0.05). Based on the correlation figure between the tide and the water level of the observation hole, the time of lag of the tide in the six observation holes is obtained, and the observation hole SK1-1 / SK1-2 / SK1-3 / SK1-4 / SK2 is obtained. The lag time of SK3 is 2.75 h ~ 2.5 h ~ (2.5 h) ~ (2.5 h) ~ 4 h ~ 4 h ~ (5.5) h ~ (-1) 7 h, and the lag time is approximately linear to the distance from the coast. The approximate expression is xt_L=0076.0(L_t/h lag time x / m distance from coast. The tidal efficiency of the six observation holes is 0.0926 ~ 0.1268 ~ (0.1596) ~ 0.050 ~ (9) ~ 0.08 ~ 0.05, respectively, and the tidal efficiency decreases with the distance by a negative exponential function. The approximate expression is that TE-e~(-0.004x)=(TE is the tidal efficiency. The linear equation is used to predict the trend change, and the Fourier series is used to fit the data after excluding the trend term. The addition of the two models is the mathematical model, and the results show that the mathematical model can fit the predicted fluctuation curve well. In this paper, three methods to solve the ratio of water storage coefficient and water conductivity coefficient of coastal aquifer are presented, that is, one observation hole, two observation holes and more than one observation hole. It is called tidal method in general, and is applied to 6 observation holes. The ratio of the water storage coefficient to the conductivity coefficient of the confined aquifer in the North Sea is about 0.39 脳 10 ~ (-1) ~ (-6) ~ 5.25 脳 10 ~ (-1) ~ (-1) d / m ~ (2).
【學位授予單位】:中國地質(zhì)大學(北京)
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:P641.2;P731.2
【相似文獻】
相關(guān)期刊論文 前10條
1 陳崇希;三維地下水流中常規(guī)觀測孔水位的形成機理及確定方法[J];地球科學;2003年05期
2 王珍;;凍結(jié)井筒水文觀測孔設(shè)計與創(chuàng)新[J];安徽科技;2014年06期
3 胡德新;利用一個觀測孔確定彌散系數(shù)[J];勘察科學技術(shù);1995年02期
4 王經(jīng)明,龔乃勤,劉懷斌,孫本魁;地質(zhì)鉆孔—水文地質(zhì)觀測孔的轉(zhuǎn)換技術(shù)及其應(yīng)用[J];煤田地質(zhì)與勘探;1997年06期
5 田振清;鄭建新;晏立森;;郟縣大興煤業(yè)有限公司水文觀測孔設(shè)計[J];能源與節(jié)能;2013年08期
6 田立強;范士彥;李毅;張心彬;翁士忠;;煤礦采掘工作面覆巖觀測孔施工技術(shù)應(yīng)用——以山西省黃巖匯井田15100采掘工作面為例[J];中國煤炭地質(zhì);2009年03期
7 柴宿東;陳敏虹;;祁東煤礦6~#地面水文長期觀測孔施工技術(shù)實踐[J];地下水;2014年02期
8 獨仲德,郭志明,江洪;潛水含水層水位觀測孔水位偽變化的觀測與分析[J];干旱環(huán)境監(jiān)測;2002年04期
9 劉志峰;王琳琳;林洪孝;;優(yōu)選抽水試驗觀測孔井位的系統(tǒng)模糊決策模型研究[J];中國巖溶;2012年02期
10 李建斌,,石欽周,張新民;聯(lián)合施工法施工水文地質(zhì)觀測孔[J];探礦工程(巖土鉆掘工程);1995年06期
相關(guān)碩士學位論文 前3條
1 劉艷;海潮引起的濱海地區(qū)地下水位波動的研究[D];中國地質(zhì)大學(北京);2016年
2 董建楠;北京大灰廠地震觀測孔水位動態(tài)特征及模型研究[D];中國地質(zhì)大學(北京);2010年
3 賈承霖;近海岸地下水觀測孔中鹽分分子擴散的觀測與分析[D];中國地質(zhì)大學(北京);2013年
本文編號:1419910
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1419910.html