青海沱沱河地區(qū)楚多曲鉛鋅礦控礦構(gòu)造特征和礦床成因研究
本文關(guān)鍵詞:青海沱沱河地區(qū)楚多曲鉛鋅礦控礦構(gòu)造特征和礦床成因研究 出處:《吉林大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 控礦構(gòu)造特征 流體包裹體 H-O-S-Pb同位素 礦床成因 楚多曲鉛鋅礦 青海
【摘要】:楚多曲鉛鋅礦床是近年來在沱沱河地區(qū)發(fā)現(xiàn)的大型鉛鋅礦床之一,(333+334)Pb金屬量40.25萬噸、Zn金屬量11.27萬噸、Cu金屬量0.92萬噸,具有巨大的找礦潛力,但是礦床成因類型不確定和控礦構(gòu)造樣式模糊等因素嚴(yán)重制約了找礦突破,因此十分有必要對該礦床進(jìn)行全面深入的研究,為沱沱河地區(qū)找礦突破提供基礎(chǔ)參考。本論文在野外調(diào)查基礎(chǔ)上,充分查明楚多曲鉛鋅礦區(qū)域地質(zhì)背景、礦區(qū)地質(zhì)特征和礦床地質(zhì)特征,對礦床進(jìn)行了流體包裹體、同位素地球化學(xué)等方面的研究,查明了成礦流體成分和成礦流體演化過程,明確了礦床成因。楚多曲鉛鋅礦床的礦體賦存地層主要為夏里組(J2x),其次是索瓦組(J3s),主要賦存于碎裂泥晶粉晶灰?guī)r、碎裂長石石英砂巖中,灰?guī)r中礦化明顯好于砂巖,灰?guī)r提供了良好的成礦環(huán)境和賦礦空間。礦體產(chǎn)于NWW向斷裂破碎帶內(nèi),礦體主要呈似層狀、脈狀。沱沱河盆地的NWW向Ⅰ級斷裂為區(qū)內(nèi)導(dǎo)礦構(gòu)造,NWW向Ⅰ級斷裂派生的NWW向Ⅱ級張扭性斷裂為區(qū)內(nèi)容礦構(gòu)造?氐V構(gòu)造形成于古近紀(jì)始新世大陸碰撞造山后拉張環(huán)境,而非前人認(rèn)為的成礦受推覆構(gòu)造控制,成礦與沱沱河地區(qū)新生代大規(guī)模的鉀質(zhì)-超鉀質(zhì)巖漿活動關(guān)系密切,與鉀質(zhì)-超鉀質(zhì)淺成侵入體密切相關(guān)。楚多曲鉛鋅礦床礦石礦物主要有黃鐵礦、黃銅礦、方鉛礦、閃鋅礦、褐鐵礦、藍(lán)銅礦、硫砷銅銀礦和鏡鐵礦等;脈石礦物主要為石英、方解石、重晶石、石膏和少量絹云母等。礦石結(jié)構(gòu)主要有自形-半自形粒狀結(jié)構(gòu)、他形粒狀結(jié)構(gòu)、包含結(jié)構(gòu)、碎裂結(jié)構(gòu)、殘留結(jié)構(gòu)和假象結(jié)構(gòu)等。礦石構(gòu)造主要有塊狀構(gòu)造、角礫狀構(gòu)造、脈狀-網(wǎng)脈狀構(gòu)造、浸染狀構(gòu)造和條帶狀構(gòu)造等。圍巖蝕變主要有碳酸鹽化、重晶石化、綠簾石化、絹云母化、硅化和伊利石化等。楚多曲鉛鋅礦區(qū)內(nèi)存在明顯的礦化分帶:南部為成礦Ⅰ階段偏高溫的石英-鏡鐵礦組合礦化帶;北部為成礦Ⅱ、Ⅲ階段方解石-方鉛礦-閃鋅礦-黃銅礦中低溫組合礦化帶。成礦過程分為3個階段,以石英-鏡鐵礦組合(第Ⅰ階段)、石英-重晶石-多金屬硫化物組合(第Ⅱ階段)和碳酸鹽(第Ⅲ階段)為標(biāo)志。流體包裹體以氣液兩相為主,成礦壓力(主成礦階段)范圍15.66~29.42 MPa(平均值21.63 MPa),成礦深度(主成礦階段)1.57~2.94 km(平均值2.16 km),主成礦階段(Ⅱ階段)流體具有中低溫(182℃~273℃)、中低鹽度(4.01%~14.94%)、低密度(0.82g/cm3~0.98g/cm3)的特征,從早到晚溫度、壓力和鹽度逐漸降低。成礦Ⅰ階段,成礦流體溫度較高,在氧化條件下,形成鏡鐵礦等礦物,晚期開始有黃鐵礦、黃銅礦沉淀。成礦Ⅱ階段,最初大量硫化物的沉淀以及淺部大氣水的加入使得流體變得氧化,重晶石、石英等開始大量結(jié)晶。隨著溫度降低,重晶石、石英等結(jié)束結(jié)晶,成礦流體轉(zhuǎn)變?yōu)橹行赃原流體,黃鐵礦、黃銅礦、閃鋅礦、方鉛礦等礦物開始沉淀。成礦Ⅲ階段,成礦流體由中性還原流體向氧化流體轉(zhuǎn)變,形成網(wǎng)脈狀方解石和針狀石膏。碳、氫、氧同位素特征均表明成礦流體主要來自巖漿熱液,隨著成礦作用進(jìn)行,成礦晚期流體有大氣降水的參與,成礦流體具有混合來源特征,與MVT鉛鋅礦床成礦流體來源于盆地鹵水不同。硫同位素特征指示,成礦物質(zhì)中的硫主要來自相對單一巖漿源。鉛同位素結(jié)果表明,楚多曲鉛鋅礦床鉛具有混合鉛特征,以殼源鉛為主混合少量深源地幔鉛,混合由俯沖造山作用導(dǎo)致,主要來源于與巖漿作用關(guān)系密切的新生代火山巖,與硫同位素反映的成礦物質(zhì)來源一致。綜合分析認(rèn)為,楚多曲鉛鋅礦床屬于中溫?zé)嵋好}型鉛鋅礦床,成礦與沱沱河地區(qū)新生代大規(guī)模的鉀質(zhì)-超鉀質(zhì)巖漿活動關(guān)系密切,受NWW向斷裂構(gòu)造控制,控礦構(gòu)造形成于古近紀(jì)始新世大陸碰撞造山后拉張環(huán)境。
[Abstract]:In the Chu lead-zinc deposit is one of the large lead-zinc deposit found in Tuotuohe area in recent years, (333+334) Pb metal volume of 402 thousand and 500 tons, 112 thousand and 700 tons of metal Zn, Cu metal volume of 9 thousand and 200 tons, with great prospecting potential, but the genesis types of uncertain structure and ore sample fuzzy factors have seriously restricted the prospecting breakthrough, so it is very necessary to conduct a comprehensive in-depth study of the deposit, as the Tuotuohe area of prospecting breakthrough. This thesis provides the basis reference on the basis of field investigation, fully Chamingchuduo Qu lead-zinc mine regional geological background, geological features and geological features of the deposit, fluid inclusion, isotope geochemistry so, find out the composition of the ore-forming fluids and ore-forming fluid evolution, the genesis of the deposit. The ore body formation in the Chu lead-zinc deposit is mainly in summer group (J2x), followed by cable Watts group (J3s), occurs mainly in the fractured limestone micrite powder, cataclastic feldspar quartz sandstone, limestone mineralization was significantly better than that of sandstone, limestone provides good metallogenic environment and ore bearing space. The orebodies occur in the NWW fault fracture zone, the ore body mainly stratoid and vein Tootoo. The NWW river basin to grade fault zone ore structure NWW to grade NWW to grade II fracture derived transtensional fault zone for content bearing structures. The ore controlling structure formed in the Eocene continental collision post orogenic extensional environment, rather than forming previously considered by nappe tectonic control the relationship between the new generation system, large-scale ULTRAPOTASSIUM magmatism mineralization and Tuotuohe area closely, closely related with body ULTRAPOTASSIUM shallow intrusive. Chu multiloop lead-zinc deposit, the ore minerals are mainly pyrite, chalcopyrite, galena, sphalerite, limonite, azurite, sulfur and arsenic copper silver mirror Iron ore; gangue minerals are mainly quartz, calcite, barite, gypsum and a small amount of Sericite. Ore textures are mainly euhedral and subhedral granular structure, xenomorphic granular structure, including structure, cataclastic structure, residual structure and false structure. The main ore structures are massive structure, brecciated structure, vein - net vein structure, disseminated structure and banded structure. Wall rock alteration are mainly carbonate, baritization, epidotization, sericitization, silicification and illite etc. in lead-zinc mining area in the memory of Chu obvious mineralization zoning: Southern metallogenic stage of partial high temperature quartz hematite combination the northern ore mineralization belt; II, III stage calcite galena sphalerite chalcopyrite mineralization belt. Low temperature combined mineralization process is divided into 3 stages, with quartz and hematite combination (the first stage), quartz and barite polymetallic sulfide assemblage (II (III) stage and carbonate stage) as a symbol. The gas-liquid two-phase fluid inclusions in the main metallogenic pressure (main metallogenic stage) 15.66~29.42 MPa (average 21.63 MPa), metallogenic depth (main metallogenic stage) 1.57~2.94 km (average 2.16 km), the main mineralization stage (stage II) fluid with low temperature (182 DEG ~273 DEG), low salinity (4.01%~14.94%), low density (0.82g/cm3~0.98g/cm3) characteristics, night temperature, pressure and salinity decreased gradually. Metallogenic phase I, ore-forming fluid with high temperature, under oxidizing conditions, forming minerals such as hematite, pyrite chalcopyrite precipitation started late, metallogenic stage. Initially. A lot of sulfide precipitation and shallow meteoric water makes the fluid become oxidized, barite, quartz etc. began to crystallization. With the decrease of temperature, barite, quartz and other end of crystallization, the ore-forming fluid into neutral reduction fluid, yellow Iron ore, chalcopyrite, sphalerite, galena and other mineral precipitation. Metallogenic stage III, metallogenic fluid from the fluid fluid transition to neutral reduction oxidation, the formation of stockwork calcite and gypsum. Acicular carbon, hydrogen and oxygen isotopic characteristics show that the ore-forming fluid mainly from magmatic hydrothermal, with mineralization, metallogenic fluid has advanced atmospheric precipitation in the ore-forming fluid with mixed source characteristics and source of ore-forming fluid in MVT lead-zinc deposit basin brine. Indicating the characteristics of sulfur isotope, sulfur in the ore-forming material mainly from magma source. The relative single lead isotope results show that: the Chu lead-zinc deposit lead is mixed lead character, the crust derived lead was mainly mixed with a small amount of deep mantle lead mixing caused by subduction orogenesis and magmatism, mainly from the close relationship between the Cenozoic volcano rock, and ore-forming material sources of sulfur isotope reflect. Comprehensive analysis shows that the Chu multiloop lead-zinc deposit belongs to mesothermal vein type lead-zinc deposit, the relationship between the new generation of large-scale ULTRAPOTASSIUM magmatism mineralization and Tuotuohe area closely controlled by NWW faults, ore controlling structures formed in the Eocene continental collision post orogenic extensional environment.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:P618.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹宏杰;;四川蘑菇山礦區(qū)控礦構(gòu)造特征及構(gòu)造控礦模式[J];礦產(chǎn)勘查;2011年04期
2 李睿;任軍麗;彭玉鯨;郭嘉琨;殷悅;;新的構(gòu)造控礦類型——螺旋構(gòu)造控礦[J];吉林地質(zhì);2012年03期
3 孫忠實(shí);劉四川;鄭常青;譚亮;孫黎;李娟;施璐;崔芳華;范思琦;;大興安嶺柴—蘑地區(qū)控礦構(gòu)造特征及賦礦規(guī)律[J];中國地質(zhì);2013年02期
4 翟裕生;關(guān)于控礦構(gòu)造研究的思考[J];礦床地質(zhì);1994年S1期
5 劉國生;安徽定遠(yuǎn)方解石礦控礦構(gòu)造特征簡介[J];建材地質(zhì);1997年06期
6 張壽庭,李忠權(quán);斷裂轉(zhuǎn)折及其控礦特征[J];礦物巖石;1998年02期
7 王友誼;;小茅山銅鉛鋅礦陳家橋礦段控礦構(gòu)造研究[J];江蘇地質(zhì);2006年01期
8 黃清濤;安徽省羅河鐵礦的控礦構(gòu)造探討[J];中國地質(zhì);1984年08期
9 朱繼存;定遠(yuǎn)方解石礦的控礦構(gòu)造特征[J];建材地質(zhì);1997年01期
10 李社;管太陽;潘家永;曹雙林;;下莊礦田控礦斷裂的分形特征[J];地質(zhì)找礦論叢;2005年04期
相關(guān)會議論文 前10條
1 徐玨;;廣西某地礦田構(gòu)造及其控巖控礦規(guī)律(1985)[A];中國地質(zhì)科學(xué)院礦床地質(zhì)研究所文集(18)[C];1986年
2 孟憲剛;;遼寧阜新地宮—建設(shè)金異常區(qū)控礦構(gòu)造研究[A];中國地質(zhì)科學(xué)院“九五”科技成果匯編[C];2001年
3 戰(zhàn)群;;張家洼2~#礦床控礦構(gòu)造特征及尋找盲礦體有利區(qū)域預(yù)測及驗(yàn)證[A];魯冀晉瓊粵川六省金屬學(xué)會第十四屆礦山學(xué)術(shù)交流會論文集[C];2007年
4 張會瓊;韋昌山;;佛子沖鉛鋅礦田構(gòu)造控礦特征[A];全國成礦理論與深部找礦新方法及勘查開發(fā)關(guān)鍵技術(shù)交流研討會論文集[C];2010年
5 潘O,
本文編號:1418231
本文鏈接:http://sikaile.net/kejilunwen/diqiudizhi/1418231.html